Advertisement

The Effect of Brexit on the Balance of Power in the European Union Council Revisited: A Fuzzy Multicriteria Attempt

  • Barbara GładyszEmail author
  • Jacek Mercik
  • David M. Ramsey
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11290)

Abstract

The approaching exit of Great Britain from the European Union raises many questions about the changing relations between other member states. In this work, we propose a new fuzzy game for multicriteria voting. We use this game to show changes in Shapley’s values in a situation where the weights of individual member countries are not determined and we describe non-determinism with fuzzy sets. In particular, this concerns considerations related to pre-coalitions.

Keywords

Voting games Power index Fuzzy set European Union Council 

Literature

  1. Alonso-Meijide, J., Bowles, C., Holler, M., Napel, S.: Monotonicity of power in games with a priori unions. Theory Decis. 66: 17–37 (2009)MathSciNetCrossRefGoogle Scholar
  2. Bertini, C.: Shapley value. In: Dowding, K. (ed.) Encyclopedia of Power, Los Angeles, pp. 600–603. SAGE Publications (2011)Google Scholar
  3. Borkotokey, S.: Cooperative games with fuzzy coalition and fuzzy characteristic function. Fuzzy Sets Syst. 159, 138–151 (2008)MathSciNetCrossRefGoogle Scholar
  4. Borkotokey, S., Mesiar, R.: The Shapley Value of cooperative games under fuzzy setting: a survey. Int. J. Gen Syst 43(1), 75–95 (2014)MathSciNetCrossRefGoogle Scholar
  5. van den Brink, R.: An axiomatization of the Shapley value using a fairness property. Int. J. Game Theory 30, 309–319 (2001)MathSciNetCrossRefGoogle Scholar
  6. Dubois, D., Prade, H.: Operations on fuzzy numbers. Int. J. Syst. Sci. 9(6), 613–626 (1978)MathSciNetCrossRefGoogle Scholar
  7. Dubois, D., Prade, H.: Possibility Theory: An Approach to Computerized Processing of Uncertainty. Plenum Press, New York (1988)CrossRefGoogle Scholar
  8. Gładysz, B., Mercik, J.: The Shapley Value in fuzzy simple cooperative games. In: Nguyen, N.T., Hoang, D.H., Hong, T.-P., Pham, H., Trawiński, B. (eds.) ACIIDS 2018. LNCS (LNAI), vol. 10751, pp. 410–418. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-75417-8_39CrossRefGoogle Scholar
  9. Li, S., Zhang, Q.: A simplified expression of the Shapley function for fuzzy game. Eur. J. Oper. Res. 196, 234–245 (2009)MathSciNetCrossRefGoogle Scholar
  10. Meng, F., Zhang, Q.: The Shapley value on a kind of cooperative games. J. Comput. Inf. Syst. 7(6), 1846–1854 (2011)Google Scholar
  11. Mercik, J., Ramsey, David M.: The effect of Brexit on the balance of power in the European Union Council: an approach based on pre-coalitions. In: Mercik, J. (ed.) Transactions on Computational Collective Intelligence XXVII. LNCS, vol. 10480, pp. 87–107. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70647-4_7CrossRefzbMATHGoogle Scholar
  12. Myerson, R.: Graphs and cooperation in games. Math. Oper. Res. 2(3), 225–229 (1977)MathSciNetCrossRefGoogle Scholar
  13. Owen, G.: Values of games with a priori unions. In: Henn, R., Moeschlin, O. (eds.) Mathematical Economics and Game Theory, vol. 141, pp. 76–88. Springer, Heidelberg (1977).  https://doi.org/10.1007/978-3-642-45494-3_7CrossRefGoogle Scholar
  14. Pang, J., Chen, X., Li, S.: The Shapley values on fuzzy coalition games with concave integral form. J. Appl. Math. (2014). http://dx.doi.org/10.1155/2014/231508
  15. Shapley, L.S.: A value for n-person games. In: Kuhn, H., Tucker, A.W. (eds.) Contributions to the Theory of Games II. Annals of Mathematics Studies, vol. 28, pp. 307–317. Princeton University Press (1953)Google Scholar
  16. Shapley, L.S., Shubik, M.: A method for evaluating the distribution of power in a committee system. Am. Polit. Sci. Rev. 48, 787–792 (1954)CrossRefGoogle Scholar
  17. Tsumari, M., Tetsuzo, T., Masahiro, I.: A Shapley function on a class of cooperative fuzzy games. Eur. J. Oper. Res. 129, 596–618 (2001)MathSciNetCrossRefGoogle Scholar
  18. Young, H.: Monotonic solutions of cooperative games. Int. J. Game Theory 14, 65–72 (1985)MathSciNetCrossRefGoogle Scholar
  19. Yu, X., Zhang, Q.: An extension of fuzzy cooperative games. Fuzzy Sets Syst. 161, 1614–1634 (2010)CrossRefGoogle Scholar
  20. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Barbara Gładysz
    • 1
    Email author
  • Jacek Mercik
    • 2
  • David M. Ramsey
    • 1
  1. 1.Faculty of Computer Science and ManagementWrocław University of Science and TechnologyWroclawPoland
  2. 2.WSB University in WroclawWroclawPoland

Personalised recommendations