Advertisement

Discussions of the New Results

  • Kikuo ChoEmail author
Chapter
Part of the Springer Tracts in Modern Physics book series (STMP, volume 237)

Abstract

New results are discussed from various angles. A reversible rewriting of the single susceptibility constitutive equation leads to a first-principles definition of \({\varvec{P}}\) and \({\varvec{M}}\) induced by both \({\varvec{E}}\) and \({\varvec{B}}\). This contains the microscopic definition of constitutive equations in chiral medium, more reliable than the phenomenological DBF eqs, and their comparison is made in details. A comparison with other types of single susceptibility theories of EM response, including that of Landau-Lifshitz, is made, which shows the advanced nature of the present theory. A short discussion about LWA is given, indicating its positive and negative meanings depending on the problem in consideration. As a special example of the application of this theory, dispersion curve and transmission window in a left-handed chiral medium are discussed. The aspects of L electric field is described.

References

  1. 1.
    Drude, P.: Lehrbuch der Optik, Leipzig, S. Hirzel (1912); Born, M.: Optik, J. Springer, Heidelberg (1933); Fedorov, F.I.: Opt. Spectrosc. 6 49 (1959); ibid. 6 237 (1959)Google Scholar
  2. 2.
    Band, Y.B.: Light and Matter, p. 142. Wiley, New Jersey (2006)Google Scholar
  3. 3.
    Cho, K.: Electromagnetic Metamaterials: A Modern Problem of Macroscopic Electromagnetic Fiels. Sakoda, K. (ed.), Chap. 12. Springer, BerlinGoogle Scholar
  4. 4.
    Luan, P.-G., Wang, Y.-T., Zhang, S., Zhang, X.: Opt. Lett. 36, 675 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    Tomita, S., Sawada, K., Porokhnyuk, A., Ueda, T.: Phys. Rev. Lett. 113, 235501 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    Agranovich, V.M., Ginzburg, V.L.: Crystal Optics with Spatial Dispersion, and Excitons, Sect. 6. Springer, Berlin (1984)Google Scholar
  7. 7.
    Il’inskii, Yu.A., Keldysh, L.V.: Electromagnetic Response of Material Media. Plenum Press, New York (1994)CrossRefGoogle Scholar
  8. 8.
    Landau, L.D., Lifshitz, E.M.: Electromagnetics of Continuous Media. Pergamon Press, Oxford (1960)zbMATHGoogle Scholar
  9. 9.
    Pekar, S.I.: Zh. Eksp. Teor. Fiz. 33, 1022 (1957) [Sov. Phys. JETP 6, 785 (1957)]Google Scholar
  10. 10.
    Hopfield, J.J., Thomas, D.G.: Phys. Rev. 132, 563 (1963)ADSCrossRefGoogle Scholar
  11. 11.
    Birman, J.L.: Excitons. In: Rashba, E.I., Sturge, M.D. (eds.) p. 72, North Holland (1982); Halevi, P.: Spatial Dispersion in Solids and Plasmas, p. 339, In Halevi, P. Elsevier, Amsterdam (1992)Google Scholar
  12. 12.
    Ikawa, T., Cho, K.: Phys. Rev. B66, 085338 (2002); Hu\(\ddot{\rm b}\)ner, M., Prineas, J.P., Ell, C., Brick, P., Lee, E.S., Khitrova, G., Gibbs, H.M., Koch, S.W.: Phys. Rev. Lett. 83 2841 (1999)Google Scholar
  13. 13.
    Agranovich, V.M., Shen, Y.R., Baughman, R.H., Zakhidov, A.A.: Phys. Rev. B 69, 165112 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    Chipouline, A., Simovski, K., Tretyakov, S.: Metamaterials 6, 77–120 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    Cho, K.: arXiv:1303.0355; Proceedings of the International Congress on Advanced Electromagnetic Materials in Microwave and Optics,  https://doi.org/10.1109/Metamaterials.2013.6809094, Bordeaux (2013)
  16. 16.
    Nelson, D.F.: Electric, Optic, and Acoustic Interactions in Dielectrics. Wiley, New York (1979)Google Scholar
  17. 17.
    Cho, K.: Optical Response of Nanostructures: Microscopic Nonlocal Theory. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Cho, k.: J. Phys. Soc. Jpn. 68, 683 (1999)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Toyota Physical and Chemical Research InstituteAichiJapan

Personalised recommendations