Advertisement

PNF- Grundprinzipien und -Prozeduren

  • Math BuckEmail author
  • Dominiek Beckers
Chapter

Zusammenfassung

Es gibt im PNF-Konzept zahlreiche Möglichkeiten die muskuläre Aktivität zu beeinflussen. Die jeweiligen Stimuli, Grundprinzipien und Prozeduren werden eingeteilt in: Exterozeptive Stimuli, propriozeptive Stimuli und Grundprinzipien. In diesem Kapitel wird jeweils erklärt, wann, wie, wo und weshalb die verschiedenen Stimuli eingesetzt werden.

Literatur

  1. Brooks VB (1986) The neural basis of motor control. Oxford University Press, New YorkGoogle Scholar
  2. Chan CWY (1984) Neurophysiological basis underlying the use of resistance to facilitate movement. Physiother Can 36(6):335–341Google Scholar
  3. Conrad B, Meyer-Lohmann J (1980) The long-loop transcortical load compensating reflex. Trends Neurosci 3:269–272CrossRefGoogle Scholar
  4. Dudel JR, Menzel R, Schmidt RF (1996) Neurowissenschaft. Springer, Berlin Heidelberg New YorkGoogle Scholar
  5. Evarts EV, Tannji J (1974) Gating of motor cortex reflexes by prior instruction. Brain Res 71:479–494PubMedCrossRefGoogle Scholar
  6. Fischer E (1967) Factors affecting motor learning. Am J Phys Med 46(1):511–519PubMedGoogle Scholar
  7. Frank JS, Earl M (1990) Coordination of posture and movement. Phys Ther 70(12):109–117CrossRefGoogle Scholar
  8. Gellhorn E (1947) Patterns of muscular activity in man. Arch Phys Med 28:568–574Google Scholar
  9. Gellhorn E (1949) Proprioception and the motor cortex. Brain 72:35–62PubMedCrossRefGoogle Scholar
  10. Gentile AM (1987) Skill Acquisition: action, movement and neuromotor processes. In: Carr JH, Sheperd RB (Hrsg) Movement science. Foundations for physical therapy in rehabilitation. Aspen Publications, RockvilleGoogle Scholar
  11. Grzebellus M, Schäfer C (1998) Irradiation aus biomechanischer Sicht. Krankengymnast Zeitschrift Für Physiother (9):1489–1494Google Scholar
  12. Halvorson HM (1931) An experimental study of prehension in infants by means of systematic cinema records. Genet Psychol Monogr 10:279–289 (Reprinted in: Jacobs MJ (1967) Development of normal motor behavior. Am J Phys Med 46 (1): 41–51)Google Scholar
  13. Hammond PH (1956) The influences of prior instruction to the subject on an apparently involuntary neuromuscular response. J Physiol 132:17P–18PGoogle Scholar
  14. Hedin-Andèn S (2002) PNF-Grundverfahren und funktionelles Training. Urban & Fischer, StuttgartGoogle Scholar
  15. Hislop HH (1960) Pain and exercise. Phys Ther Rev 40(2):98–106 (Reprinted in: Jacobs MJ (1967) Development of normal motor behavior. Am J Phys Med 46 (1): 41–51)PubMedCrossRefGoogle Scholar
  16. Jacobs MJ (1967) Development of normal motor behavior. Am J Phys Rehabil 46(1):41–51Google Scholar
  17. Johansson CA, Kent BE, Shepard KF (1983) Relationship between verbal command volume and magnitude of muscle contraction. Phys Ther 63(8):1260–1265PubMedCrossRefGoogle Scholar
  18. Johnson G, Saliba V (1985), nicht publiziertGoogle Scholar
  19. Kabat H (1947) Studies on neuromuscular dysfunction, XI: New principles of neuromuscular reeducation. Perm Found Med Bull 5(3):111–123PubMedGoogle Scholar
  20. Kabat H (1961) Proprioceptive facilitation in therapeutic exercise. In: Licht S, Johnson EW (Hrsg) Therapeutic exercise, 2. Aufl. Waverly, BaltimoreGoogle Scholar
  21. Klein-Vogelbach S (2000) Funktionelle Bewegungslehre. Bewegung lehren und lernen, 5. Aufl. Rehabilitation und Prävention. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  22. Knott M, Voss DE (1968) Proprioceptive neuromuscular facilitation: patterns and techniques, 2. Aufl. Harper and Row, New YorkGoogle Scholar
  23. Kofotolis N, Vrabas IS, Vamvakoudis E, Papanikolaou A, Mandroukas K (2005) Proprioceptive neuromuscular facilitation training induced alterations in muscle fiber type and cross sectional area. Br J Sports Med 39(3):e11PubMedPubMedCentralCrossRefGoogle Scholar
  24. Lee DN, Lishman JR (1975) Visual proprioceptive control of stance. J Hum Mov Stud 1:87–95Google Scholar
  25. Lee DN, Young DS (1985) Visual timing in interceptive actions. In: Ingle DJ et al (Hrsg) Brain mechanisms and spatial vision. Martinus Nijhoff, DordrechtGoogle Scholar
  26. Loofbourrow GN, Gellhorn E (1948) Proprioceptive modification of reflex patterns. J Neurophysiol 12:435–446CrossRefGoogle Scholar
  27. Loofbourrow GN, Gellhorn E (1948) Proprioceptively induced reflex patterns. Am J Physiol 154:433–438PubMedCrossRefGoogle Scholar
  28. Nashner LM (1977) Fixed patterns of rapid postural responses among leg muscles during stance. Exp Brain Res 30:13–24PubMedCrossRefGoogle Scholar
  29. Partridge MJ (1954) Electromyographic demonstration of facilitation. Phys Ther Rev 34(5):227–233PubMedCrossRefGoogle Scholar
  30. Schmidt RA, Lee TD (1999) Motor control and learning. A behavioral emphasis. Human KineticsGoogle Scholar
  31. Sherrington C (1947) The integrative action of the nervous system, 2. Aufl. Yale University Press, New HavenGoogle Scholar
  32. Umphred DA (1995) Neurological rehabilitation. Mosby, St. LouisGoogle Scholar
  33. Voss DE, Ionta M, Meyers B (1985) Proprioceptive neuromuscular facilitation: patterns and techniques, 3. Aufl. Harper and Row, New YorkGoogle Scholar
  34. Merriam-Webster (1984) Webster’s ninth new collegiate dictionary. Merriam-Webster, SpringfieldGoogle Scholar

Weiterführende Literatur – Allgemein

  1. Dietz V, Noth J (1978) Pre-innervation and stretch responses of triceps brachii in man falling with and without visual control. Brain Res 142:576–579PubMedCrossRefGoogle Scholar
  2. Griffin JW (1974) Use of proprioceptive stimuli in therapeutic exercise. Phys Ther 54(10):1072–1079PubMedCrossRefGoogle Scholar
  3. Hoessly M (1991) Use of eccentric contractions of muscle to increase range of movement in the upper neuron syndrome. Physiother Theory Pract 7:91–101CrossRefGoogle Scholar
  4. Hummelbein H (2000) Repetitives Üben in der Rehabilitation zentraler Paresen. Zeitschrift Für Physiother 6Google Scholar
  5. Hummelsheim H (1998) Neurologische Rehabilitation. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  6. Kandel ER, Schwartz JH, Jessell TM (1995) Neurowissenschaften – Eine Einführung. Spektrum Akademischer Verlag, HeidelbergGoogle Scholar
  7. Kandel ER, Schwartz JH, Jessell TM (2000) Principles of neural science, 4. Aufl. McGraw-Hill, New York, St. Louis, San FransiscoGoogle Scholar
  8. Lance JW (1980) The control of muscle tone, reflexes and movement: M. Robert Wartenburg lecture. Baillieres Clin Neurol 30:1303Google Scholar
  9. Lee TD, Swanson LR, Hall AL (1991) What is repeated in a repetition? Effects of practice, conditions on motor skill acquisition. Phys Ther 2:150–156CrossRefGoogle Scholar
  10. Payton OD, Hirt S, Newton RA (Hrsg) (1977) Scientific basis for neuro-physiologic approaches to therapeutic exercise, an anthology. FA Davis, PhiladelphiaGoogle Scholar
  11. Rosenbaum DA (1991) Human motor control. Academic Press, San DiegoGoogle Scholar
  12. Schmidt R (1998) Motor and action perspectives on motor behaviour: the motor action controversy. Elsevier, AmsterdamGoogle Scholar
  13. Taub E, Miller NE, Novack TA, Cook EW, Friening WC, Nepomuceno CS, Connell JS, Crago JE (1993) Technique to improve chronic motor deficit after stroke. Arch Phys Med Rehab 74(4):347–354Google Scholar
  14. Umphred DA (2000) Neurologische Rehabilitation. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  15. Umphred DA (2001) Neurological rehabilitation. Mosby, St. LouisGoogle Scholar
  16. Wilmore JH, Costill DL (1994) Physiotherapy of sport and exercise. Human Kinetics, ChampaignGoogle Scholar

Weiterführende Literatur – Stretch

  1. Burg D, Szumski AJ, Struppler A, Velho F (1974) Assessment of fusimotor contribution to reflex reinforcement in humans. J Neuro Neurosurg Psychiatr 37:1012–1021CrossRefGoogle Scholar
  2. Cavagna GA, Dusman B, Margaria R (1968) Positive work done by a previously stretched muscle. J Appl Phys 24(1):21–32Google Scholar
  3. Chan CWY, Kearney RE (1982) Is the functional stretch response servo controlled or preprogrammed. Electroen Clin Neuro 53:310–324CrossRefGoogle Scholar
  4. Chez C, Shinoda Y (1978) Spinal mechanisms of the functional stretch reflex. Exp Brain Res 32:55–68Google Scholar

Weiterführende Literatur – Widerstand, Irradiation und Verstärkung

  1. Hellebrandt FA (1958) Application of the overload principle to muscle training in man. Arch Phys Med Rehab 37:278–283Google Scholar
  2. Hellebrandt FA, Houtz SJ (1956) Mechanisms of muscle training in man: experimental demonstration of the overload principle. Phys Ther 36(6):371–383CrossRefGoogle Scholar
  3. Hellebrandt FA, Houtz SJ (1958) Methods of muscle training: the influence of pacing. Phys Ther 38:319–322CrossRefGoogle Scholar
  4. Hellebrandt FA, Waterland JC (1962) Expansion of motor patterning under exercise stress. Am J Phys Med 41:56–66PubMedGoogle Scholar
  5. Moore JC (1975) Excitation overflow: an electromyographic investigation. Arch Phys Med Rehab 56:115–120Google Scholar

Weiterführende Literatur – Tactiler Stimulus

  1. Fallon JB et al (2005) Evidence for strong synaptic coupling between single tactile afferents from the sole of the foot and motoneurons supplying leg muscles. J Neurophysiol 94:3795–3804PubMedCrossRefGoogle Scholar
  2. Jeka JJ, Lackner JR (1994) Fingertip contact influences human postural control. Exp Brain Res 1994(100):495–502CrossRefGoogle Scholar

Weiterführende Literatur – Verbaler Stimulus

  1. Sadowski J, Mastalerz A, Niznikowski, Wisniowski W, Biegajlo M, Kulik M (2011) The effects of different types of verbal feedback on learning a complex movement task. Pol J Sports Tour 18:308–310Google Scholar

Weiterführende Literatur – Visueller Stimulus

  1. Mohapatra S, Krishnan V, Aruin AS (2012) The effect of decreased visual acuity on control of posture. Clin Neurophysiol 123(1):173–182PubMedCrossRefGoogle Scholar
  2. Park SE, Oh DS, Moon SH (2016) Effects of oculo-motor exercise, functional electric stimulation and proprioceptive neuromuscular stimulation on visual perception of spatial neglect patients. JPhysTherSci; 28:1111–1115PubMedPubMedCentralCrossRefGoogle Scholar
  3. Prodoehl J, Vaillancourt DE (2010) Effects of visual gain on force control at the elbow and ankle. Exp Brain Res 200(1):67–79PubMedCrossRefGoogle Scholar
  4. Ramachandran VS, Altschuler EL (2009) The use of visual feedback, in particular mirror visual feedback, in restoring brain function. Brain 132:1693–1710PubMedCrossRefGoogle Scholar

Weiterführende Literatur – Widerstand

  1. Gabriel DA, Kamen G, Frost G (2006) Neural adaptations to resistive exercise, mechanisms and recommendations for training practices. Sports Med 36(2):183–189CrossRefGoogle Scholar
  2. Kofotolis N, Vrabas IS, Vamvakoudis E, Papanikolaou A, Mandroukas K (2005) Proprioceptive neuromuscular facilitation training induced alterations in muscle fiber type and cross sectional area. Br J Sports Med 39(3):e11PubMedPubMedCentralCrossRefGoogle Scholar

Weiterführende Literatur – Approximation

  1. Fitts RH, Riley DR, Widrick JJ (2001) Functional and structural adaptations of skeletal muscle to microgravity. J Exp Biol 204(Pt 18):3201–3208PubMedGoogle Scholar
  2. Horstmann GA, Dietz V (1990) A basic posture control mechanism: the stabilization of the centre of gravity. Electroencephalogr Clin Neurophysiol 76(2):165–176PubMedCrossRefGoogle Scholar
  3. Mahani MK, Karimloo M, Amirsalari S (2010) Effects of modified Adeli suit therapy on improvement of gross motor function in children with cerebral palsy. Cereb Palsy Hong kong J Occup Ther 21(1):9–14CrossRefGoogle Scholar
  4. Ratliffe KT, Alba BM, Hallum A, Jewell MJ (1987) Effects of approximation on postural sway in healthy subjects. Phys Ther 67(4):502–506PubMedCrossRefGoogle Scholar
  5. Shin WS, Lee SW (2014) Effect of gait training with additional weight on balance and gait in stroke patients. Phys Ther Rehab Sci 3(1):55–62Google Scholar
  6. Sylos-Labini F, Lacquaniti F, Ivanenko YP (2014) Human locomotion under reduced gravity conditions: biomechanical and neurophysiological considerations. Biomed Res Int.  https://doi.org/10.1155/2014/547242CrossRefPubMedPubMedCentralGoogle Scholar
  7. Yigiter K, Sener G, Erbahceci F, Bayar K, Ülger ÖG, Akodogan S (2002) A comparison of traditional prosthetic training versus PNF resistive gait training with trans-femoral amputees. Prosthet Orthot Int 26(3):213–217PubMedCrossRefGoogle Scholar

Weiterführende Literatur – Irradiation

  1. Abreu R, Lopes AA, Sousa AS, Pereira S, Castro MP (2015) Force irradiation effects during upper limb diagonal exercises on contralateral muscle activation. J Electromyogr Kinesiology 25(2):292–297CrossRefGoogle Scholar
  2. Arai M et al (2001) Effects of the use of cross-education to the affected side through various resistive exercises of the sound side and settings of the length of the affected muscles. Hiroshima J Med Sci 3:65–73Google Scholar
  3. Carroll GTJ, Herbert RD, Munn J, Lee M, Gandavia SC (2006) Contralateral effects of unilateral strength training. Evidence and possible mechanisms. J Appl Physiol 101:1514–1522PubMedCrossRefGoogle Scholar
  4. Chiou SY, Wang RY, Liao KK, Yang YR (2016) Facilitation of the lesioned motor cortex during tonic contraction of the unaffected limb corresponds to motor status after stroke. JNPT 40:15–21PubMedGoogle Scholar
  5. De Oliviera KCR et al (2018) Overflow using proprioceptive neuromuscular facilitation on post-stroke hemiplegics: a preliminary study. J Bodyw Mov Ther. https://doi.org/10.1016/j,jbmt.2018.02.011CrossRefGoogle Scholar
  6. Gontijo LB, Pererla PD, Neves CDC, Santos AP, Castro Dutra Machado D, Vale Bastos VH (2012) Evaluation of strength and irradiated movement pattern resulting from trunk motions of the proprioceptive neuromuscular facilitation. Rehabil Res Pract. https://doi.org/10.1155/281937CrossRefPubMedPubMedCentralGoogle Scholar
  7. Hendy AM, Spittle M, Kidgell DJ (2012) Cross education and immobilisation: mechanisms and implication for injury rehabilitation. J Sci Med Sport 15(2):94–101PubMedCrossRefGoogle Scholar
  8. Hwang YI, Park DJ (2017) Comparison of abdominal muscle activity during abdominal drawing-in maneuver combined with irradiation variations. J Exerc Rehabil 13(3):335–339PubMedPubMedCentralCrossRefGoogle Scholar
  9. Kofotolis ND, Kellis E (2007) Cross-training effects of a Proprioceptive neuromuscular facilitation exercise programme on knee musculature. Phys Ther Sport 8:109–116CrossRefGoogle Scholar
  10. Lee M, Gandevia SC, Carroll TJ (2009) Unilateral strength training increases voluntary activation of the opposite untrained limb. Neurophysiol Clin 120(4):802–808CrossRefGoogle Scholar
  11. Lee M, Caroll TJ (2007) Cross Education Possible Mechanisms for the Contralateral Effects of Unilateral Resistance Training. Sports Med 37(1):1–14PubMedCrossRefGoogle Scholar
  12. Mastalerz A, Wozniak A, Urbaniak C, Lutoslawska G (2010) Contralateral effects after power training in isolated muscles in women. Acta Bioeng Biomech 12(2):1–7Google Scholar
  13. Munn J, Herbert RD, Gandevia SC (2004) Contralateral effects of unilateral resistance training a meta analysis. Jappl Physiol 96:1861–1866PubMedCrossRefGoogle Scholar
  14. Reznik JE, Biros E, Bartur G (2015) An electromyographic investigation of the pattern of overflow facilitated by manual resistive proprioceptive neuromuscular facilitation in young healthy individuals: a preliminary study. Physiother Theory Pract 31(8):582–586PubMedCrossRefGoogle Scholar
  15. Sato H, Maruyama H (2009) The effects of indirect treatment of PNF. J Phys Ther Sci 21:189–193CrossRefGoogle Scholar
  16. Shima N et al (2002) Cross education of muscular strength during unilateral resistance training and detraining. Eur Jappl Physiol 86(4):287–294CrossRefGoogle Scholar
  17. Shiratani T, Arai M, Kuruma H, Masumoto K (2017) The effects of opposite-directional static contraction of the muscles of the right upper extremity on the ipsilateral right soleus H-reflex. J Bodyw Mov Ther 21(3):528–533PubMedCrossRefGoogle Scholar
  18. Zhou S (2003) Cross education and neuromuscular adaptations during early stage of strength training. J Exerc Sci Fit 1(1):54–60Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.BeekNiederlande
  2. 2.MaasmechelenBelgien

Personalised recommendations