Decision Diagrams for Petri Nets: A Comparison of Variable Ordering Algorithms

Part of the Lecture Notes in Computer Science book series (LNCS, volume 11090)


The efficacy of decision diagram techniques for state space generation is known to be heavily dependent on the variable order. Ordering can be done a-priori (static) or during the state space generation (dynamic). We focus our attention on static ordering techniques. Many static decision diagram variable ordering techniques exist, but it is hard to choose which method to use, since only fragmented performance information is available. In the work reported in this paper we used the models of the Model Checking Contest 2017 edition to conduct an extensive comparison of 18 different algorithms, in order to better understand their efficacy. Comparison is based on the size of the decision diagram of the reachable state space, which is generated using the Saturation method provided by the Meddly library.


Decision diagrams Static variable ordering Heuristic optimization Saturation 



We would like to thank the MCC team and all colleagues that collaborated with them for the construction of the MCC database of models, and the Meddly library developers.


  1. 1.
    Ajmone Marsan, M., Conte, G., Balbo, G.: A class of generalized stochastic Petri nets for the performance evaluation of multiprocessor systems. ACM Trans. Comput. Syst. 2, 93–122 (1984)CrossRefGoogle Scholar
  2. 2.
    Aldinucci, M., Bagnasco, S., Lusso, S., Pasteris, P., Vallero, S., Rabellino, S.: The open computing cluster for advanced data manipulation (OCCAM). In: 22nd International Conference on Computing in High Energy and Nuclear Physics, San Francisco (2016)Google Scholar
  3. 3.
    Aloul, F.A., Markov, I.L., Sakallah, K.A.: FORCE: a fast and easy-to-implement variable-ordering heuristic. In: Proceedings of GLSVLSI, pp. 116–119. ACM, New York (2003)Google Scholar
  4. 4.
    Amparore, E.G.: Reengineering the editor of the GreatSPN framework. In: PNSE@ Petri Nets, pp. 153–170 (2015)Google Scholar
  5. 5.
    Amparore, E.G., Balbo, G., Beccuti, M., Donatelli, S., Franceschinis, G.: 30 years of GreatSPN. In: Fiondella, L., Puliafito, A. (eds.) Principles of Performance and Reliability Modeling and Evaluation. SSRE, pp. 227–254. Springer, Cham (2016). Scholar
  6. 6.
    Amparore, E.G., Beccuti, M., Donatelli, S.: (Stochastic) model checking in GreatSPN. In: Ciardo, G., Kindler, E. (eds.) PETRI NETS 2014. LNCS, vol. 8489, pp. 354–363. Springer, Cham (2014). Scholar
  7. 7.
    Amparore, E.G., Donatelli, S., Beccuti, M., Garbi, G., Miner, A.: Decision diagrams for Petri nets: which variable ordering? In: Petri Net Performance Engineering Conference (PNSE), pp. 31–50. CEUR-WS (2017)Google Scholar
  8. 8.
    Amparore, E.G., Beccuti, M., Donatelli, S.: Gradient-based variable ordering of decision diagrams for systems with structural units. In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp. 184–200. Springer, Cham (2017). Scholar
  9. 9.
    Baarir, S., Beccuti, M., Cerotti, D., Pierro, M.D., Donatelli, S., Franceschinis, G.: The GreatSPN tool: recent enhancements. Perform. Eval. 36(4), 4–9 (2009)CrossRefGoogle Scholar
  10. 10.
    Babar, J., Miner, A.: Meddly: multi-terminal and edge-valued decision diagram library. In: International Conference on, Quantitative Evaluation of Systems, pp. 195–196. IEEE Computer Society, Los Alamitos (2010)Google Scholar
  11. 11.
    Bollig, B., Wegener, I.: Improving the variable ordering of OBDDs is NP-complete. IEEE Trans. Comput. 45(9), 993–1002 (1996)CrossRefGoogle Scholar
  12. 12.
    Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Trans. Comput. 35, 677–691 (1986)CrossRefGoogle Scholar
  13. 13.
    Burch, J.R., Clarke, E.M., Long, D.E.: Symbolic model checking with partitioned transition relations. In: IFIP TC10/WG 10.5 Very Large Scale Integration, pp. 49–58. North-Holland (1991)Google Scholar
  14. 14.
    Ciardo, G., Lüttgen, G., Siminiceanu, R.: Saturation: an efficient iteration strategy for symbolic state—space generation. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 328–342. Springer, Heidelberg (2001). Scholar
  15. 15.
    Ciardo, G., Marmorstein, R., Siminiceanu, R.: Saturation unbound. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 379–393. Springer, Heidelberg (2003). Scholar
  16. 16.
    Ciardo, G., Yu, A.J.: Saturation-based symbolic reachability analysis using conjunctive and disjunctive partitioning. In: Borrione, D., Paul, W. (eds.) CHARME 2005. LNCS, vol. 3725, pp. 146–161. Springer, Heidelberg (2005). Scholar
  17. 17.
    Cuthill, E., McKee, J.: Reducing the bandwidth of sparse symmetric matrices. In: Proceedings of the 1969 24th National Conference, pp. 157–172. ACM, New York (1969)Google Scholar
  18. 18.
    Garavel, H.: Nested-unit petri nets: a structural means to increase efficiency and scalability of verification on elementary nets. In: Devillers, R., Valmari, A. (eds.) PETRI NETS 2015. LNCS, vol. 9115, pp. 179–199. Springer, Cham (2015). Scholar
  19. 19.
    Gibbs, N., Poole, W., Stockmeyer, P.: An algorithm for reducing the bandwidth and profile of a sparse matrix. SIAM J. 13(2), 236–250 (1976)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Heiner, M., Rohr, C., Schwarick, M., Tovchigrechko, A.A.: MARCIE’s secrets of efficient model checking. In: Koutny, M., Desel, J., Kleijn, J. (eds.) Transactions on Petri Nets and Other Models of Concurrency XI. LNCS, vol. 9930, pp. 286–296. Springer, Heidelberg (2016). Scholar
  21. 21.
    Kamp, E.: Bandwidth, profile and wavefront reduction for static variable ordering in symbolic model checking. University of Twente, Technical report, June 2015Google Scholar
  22. 22.
    King, I.P.: An automatic reordering scheme for simultaneous equations derived from network systems. J. Numer. Methods Eng. 2(4), 523–533 (1970)CrossRefGoogle Scholar
  23. 23.
    Kordon, F., et al.: Complete Results for the 2017 Edition of the Model Checking Contest, June 2017.
  24. 24.
    Kumfert, G., Pothen, A.: Two improved algorithms for envelope and wavefront reduction. BIT Numer. Math. 37(3), 559–590 (1997)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Meijer, J., van de Pol, J.: Bandwidth and Wavefront reduction for static variable ordering in symbolic reachability analysis. In: Rayadurgam, S., Tkachuk, O. (eds.) NFM 2016. LNCS, vol. 9690, pp. 255–271. Springer, Cham (2016). Scholar
  26. 26.
    Miner, A.S.: Implicit GSPN reachability set generation using decision diagrams. Perform. Eval. 56(1–4), 145–165 (2004)CrossRefGoogle Scholar
  27. 27.
    Noack, A.: A ZBDD package for efficient model checking of Petri nets (in German). Ph.D. thesis, BTU Cottbus, Department of CS (1999)Google Scholar
  28. 28.
    Rice, M., Kulhari, S.: A survey of static variable ordering heuristics for efficient BDD/MDD construction. University of California, Technical report (2008)Google Scholar
  29. 29.
    Sloan, S.W.: An algorithm for profile and wavefront reduction of sparse matrices. Int. J. Numer. Methods Eng. 23(2), 239–251 (1986)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Tovchigrechko, A.: Model checking using interval decision diagrams. Ph.D. thesis, BTU Cottbus, Department of CS (2008)Google Scholar
  31. 31.
    Van Dongen, S.: A cluster algorithm for graphs. Inform. Syst. 10, 1–40 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dipartimento di InformaticaUniversità di TorinoTurinItaly
  2. 2.Iowa State UniversityAmesUSA

Personalised recommendations