Advertisement

POTENTIALS OF LOAD CARRYING CONDUCTOR TRACKS IN NEW VEHICLE STRUCTURES

  • Alexander PototzkyEmail author
  • Daniel Stefaniak
  • Christian Hühne
Conference paper
  • 677 Downloads
Part of the Zukunftstechnologien für den multifunktionalen Leichtbau book series (ZML)

Abstract

Digitization, autonomous driving and lightweight construction are the major future challenges in automotive engineering. This means that more and more complex driver assistance systems, engine control units, infotainment systems, actuators, sensors, etc. must be installed and wired. However, from a lightweight point of view, these cables are additional weight without any structural benefit and only affect the weight balance.

Within this paper a new approach to integrate conductor tracks directly into composite structures is presented. In contrast to conventionally integrated conductor tracks, the conductor tracks which are presented here are designed for load carrying purposes. As a result, the wiring costs, the assembly costs and the weight can be reduced significantly. Carbon Fiber Reinforced Polymers (CFRP) are used for this purpose, which show great potential for lightweight construction and, due to their layered structure of individual layers, enable the integration of load-bearing conductor tracks.

Instead of conventional copper wires, different metal foils are inserted into the CFRP vehicle structure stack and used as a conductor track. The single layers can be stacked and arranged individually. In this way, the efficiency of the overall structure can be controlled and optimized.

In order to be able to analyze and evaluate the potential of CFRP with structurally integrated conductor tracks, analytical calculations, mechanical tests and investigations of the electrical properties are carried out. Finally, a demonstrator is manufactured to prove the power supply and the bus communication within the CFRP-structure.

Keywords

Function integration Structure integrated conductor tracks Fiber metal laminates Multifunctional structures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1].
    T. Form. Vorlesung Fahrzeugelektronik – TU Braunschweig. [October 12, 2017]; Available from: https://www.ifr.ing.tu-bs.de/static/files/lehre/vorlesungen/efs1/ Folien_FE1_Teil6.pdf.
  2. [2].
  3. [3].
    J. Schmidt. Entwicklung eines Interfacekonzepts für integrierte Funktionselemente in UAV-Strukturen. Diplomarbeit. Technische Universität Braunschweig; 2011.Google Scholar
  4. [4].
    Chen Q, Guan Z, Li Z, Ji Z, Zhuo Y. Experimental investigation on impact performances of GLARE laminates. Chinese Journal of Aeronautics 2015;28(6):1784–92.Google Scholar
  5. [5].
    B. Kolesnikov. Composite Material with a Reinforced Connecting Area(Patent PCT/DE99/00790).Google Scholar
  6. [6].
    E. Petersen E, D. Stefaniak, C. Hühne. Efficient joint design using metal hybridization in fiber reinforced plastics. Stade; 2014.Google Scholar
  7. [7].
    D. Stefaniak. Improving The Mechanical Performance Of Unidirectional CFRP by Metal-Hybridization: ECCM15 – 15th European Conference on Composite Materials. Venice; 24–28th 2012.Google Scholar
  8. [8].
    Eksi S, Genel K. Bending response of hybrid composite tubular beams. Thin-Walled Structures 2013;73:329–36.Google Scholar
  9. [9].
    Haedir J, Zhao X, Bambach MR, Grzebieta RH. Analysis of CFRP externally-reinforced steel CHS tubular beams. Composite Structures 2010;92(12):2992–3001.Google Scholar
  10. [10].
    N. N. Greenwood, A. Earnshaw. Chemie der Elemente. 1st ed. Weinheim: VCH Verlagsgesellschaft; 1988.Google Scholar
  11. [11].
    Läpple V. Einführung in die Festigkeitslehre: Springer.Google Scholar
  12. [12].
    Haynes. CRC Handbook of Chemistry and Physics. 92nd ed.: CRC Press.Google Scholar
  13. [13].
    M. Winter. webelements – electrical_resistivity. [March 10, 2018]; Available from: https://www.webelements.com/periodicity/electrical_resistivity/.
  14. [14].
    C. Kammer, H.W. Wenglorz. Aluminium-Taschenbuch – Band 1: Grundlagen und Werkstoffe. 16th ed; 2009.Google Scholar
  15. [15].
    Schmolz+ Bickenbach. technical datasheet aluminium 2024. [January 05, 2018].Google Scholar
  16. [16].
    K.-H. Grote, J. Feldhusen (eds.). Dubbel: Taschenbuch für den Maschinenbau. 23rd ed. Berlin; 2011.Google Scholar
  17. [17].
    F. Richter. Die physikalischen Eigenschaften der Stähle: Teil I: Tafeln und Bilder.Google Scholar
  18. [18].
    A. Fink. Lokale Metall-Hybridisierung zur Effizienzsteigerung von Hochlastfügestellen in Faserverbundstrukturen: Technische Universitaet Braunschweig; 2010.Google Scholar
  19. [19].
    Hexcel. technical datasheet DLS1611-1.Google Scholar
  20. [20].
    Prussak, R., Stefaniak, D., Hühne, C. Evaluation of residual stress development in FRP-metal hybrids using fiber Bragg grating sensors: Springer; 2018.Google Scholar
  21. [21].
    D. Stefaniak. Improving residual strength of unidirectionally reinforced plastic laminates by metal layering. Dissertation. Technische Universität Braunschweig; 2017.Google Scholar
  22. [22].
    C. David, S. Vohrer (eds.). Development of novel vehicle structures for automotive series production.Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Alexander Pototzky
    • 1
    Email author
  • Daniel Stefaniak
    • 1
  • Christian Hühne
    • 1
  1. 1.Institut für Faserverbundleichtbau und Adaptronik – FunktionsleichtbauDeutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)BraunschweigGermany

Personalised recommendations