Transition Metal-Catalyzed Oxidative Coupling Involving Two Organometallic Compounds

  • Hua Zhang
Part of the Lecture Notes in Chemistry book series (LNC, volume 102)


With the great development of classical coupling reactions involving organic halides as electrophiles and organometallic compounds as nucleophiles, transition metal-catalyzed oxidative coupling reactions involving two organometallic compounds in the presence of oxidants have emerged as alternative and efficient methods toward carbon–carbon bond formation in the past decades. Various organometallic compounds were employed as substrates in oxidative coupling catalyzed by transition metal catalysts. This chapter is structured by the different oxidants as well as homo-coupling and cross-coupling.


Transition metal-catalyzed Oxidative coupling Homo-coupling Cross-coupling Organometallic compounds Inorganic oxidants Organic oxidants Air O2 



The author gratefully thanks the National Natural Science Foundation of China (21602096) and Nanchang University (06301425).


  1. 1.
    Liu C, Zhang H, Shi W, Lei A (2011) Bond formations between two nucleophiles: transition metal catalyzed oxidative cross-coupling reactions. Chem Rev 111:1780–1824PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Shi W, Liu C, Lei A (2011) Transition-metal catalyzed oxidative cross-coupling reactions to form C-C bonds involving organometallic reagents as nucleophiles. Chem Soc Rev 40:2761–2776CrossRefGoogle Scholar
  3. 3.
    Dhital RN, Sakurai H (2014) Oxidative coupling of Organoboron compounds. Asian J Org Chem 3:668–684CrossRefGoogle Scholar
  4. 4.
    Ikegashira K, Nishihara Y, Hirabayashi K, Mori A, Hiyama T (1997) Copper(I) salt promoted homo-coupling reaction of organosilanes. Chem Commun:1039–1040Google Scholar
  5. 5.
    Nishihara Y, Ikegashira K, Hirabayashi K, Ando J-i, Mori A, Hiyama T (2000) Coupling reactions of alkynylsilanes mediated by a cu(I) salt: novel syntheses of conjugate Diynes and Disubstituted Ethynes. J Org Chem 65:1780–1787PubMedCrossRefGoogle Scholar
  6. 6.
    Nishihara Y, Ikegashira K, Toriyama F, Mori A, Hiyama T (2000) Homo-coupling reactions of alkenyl- and arylfluorosilanes mediated by a copper(I) salt. Bull Chem Soc Jpn 73:985–990CrossRefGoogle Scholar
  7. 7.
    Rodriguez D, Castedo L, Saa C (2004) Homocoupling of 1-alkynyl tosylamides. Synlett:377–379Google Scholar
  8. 8.
    Moglie Y, Mascaro E, Nador F, Vitale C, Radivoy G (2008) Nanosized iron- or copper-catalyzed homocoupling of aryl, heteroaryl, benzyl, and alkenyl Grignard reagents. Synth Commun 38:3861–3874CrossRefGoogle Scholar
  9. 9.
    Amaya T, Tsukamura Y, Hirao T (2009) Selective oxidative ligand coupling of organoborates bearing an alkynyl group. Adv Synth Catal 351:1025–1028CrossRefGoogle Scholar
  10. 10.
    Kaboudin B, Haruki T, Yokomatsu T (2011) CuSO4-mediated homocoupling of arylboronic acids under ligand- and base-free conditions in air. Synthesis 2011:91–96CrossRefGoogle Scholar
  11. 11.
    Musolino B, Quinn M, Hall K, Coltuclu V, Kabalka GW (2013) Ultrasound induced, copper mediated homocoupling using polymer supported aryltrifluoroborates. Tetrahedron Lett 54:4080–4082CrossRefGoogle Scholar
  12. 12.
    Luo H-Q, Dong W (2013) AgF-mediated Homocoupling reaction of Trialkoxy aryl Silanes. Synth Commun 43:2733–2738CrossRefGoogle Scholar
  13. 13.
    Nishiyama T, Seshita T, Shodai H, Aoki K, Kameyama H, Komura K (1996) New homo-coupling reaction of alkyl, aryl, vinyl, and allyl Grignard reagents using trifluoromethanesulfonic anhydride. Chem Lett 25:549–550CrossRefGoogle Scholar
  14. 14.
    Krasovskiy A, Tishkov A, del Amo V, Mayr H, Knochel P (2006) Transition-metal-free homocoupling of organomagnesium compounds. Angew Chem Int Ed 45:5010–5014CrossRefGoogle Scholar
  15. 15.
    Dubbaka SR, Kienle M, Mayr H, Knochel P (2007) Copper(I)-mediated oxidative cross-coupling between functionalized alkynyl lithium and aryl magnesium reagents. Angew Chem Int Ed 46:9093–9096CrossRefGoogle Scholar
  16. 16.
    Maji MS, Pfeifer T, Studer A (2008) Oxidative homocoupling of aryl, alkenyl, and alkynyl Grignard reagents with TEMPO and dioxygen. Angew Chem Int Ed 47:9547–9550CrossRefGoogle Scholar
  17. 17.
    Maji MS, Studer A (2009) Transition-metal-free oxidative homocoupling of aryl, alkenyl, and alkynyl Grignard reagents with TEMPO. Synthesis:2467–2470Google Scholar
  18. 18.
    Maji MS, Murarka S, Studer A (2010) Transition-metal-free Sonogashira-type coupling of ortho-substituted aryl and Alkynyl Grignard reagents by using 2,2,6,6-Tetramethylpiperidine-N-oxyl radical as an oxidant. Org Lett 12:3878–3881PubMedCrossRefGoogle Scholar
  19. 19.
    Amaya T, Suzuki R, Hirao T (2014) Quinonediimine-induced oxidative coupling of organomagnesium reagent. Chem Eur J 20:653–656PubMedCrossRefGoogle Scholar
  20. 20.
    Peng Z et al (2014) The transition-metal-catalyst-free oxidative homocoupling of organomanganese reagents prepared by the insertion of magnesium into organic halides in the presence of MnCl2·2LiCl. Org Biomol Chem 12:7800–7809PubMedCrossRefGoogle Scholar
  21. 21.
    Amatore C, Cammoun C, Jutand A (2008) Pd(OAc)2/p-benzoquinone-catalyzed anaerobic electrooxidative homocoupling of arylboronic acids, arylboronates and aryltrifluoroborates in DMF and/or water. Eur J Org Chem 2008:4567–4570CrossRefGoogle Scholar
  22. 22.
    Mitsudo K, Shiraga T, Tanaka H (2008) Electrooxidative homo-coupling of arylboronic acids catalyzed by electrogenerated cationic palladium catalysts. Tetrahedron Lett 49:6593–6595CrossRefGoogle Scholar
  23. 23.
    McKillop A, Elsom LF, Taylor EC (1968) Thallium in organic synthesis. III. Coupling of aryl and alkyl Grignard reagents. J Am Chem Soc 90:2423–2424CrossRefGoogle Scholar
  24. 24.
    Kang S-K, Kim T-H, Pyun S-J (1997) Copper(I)-catalyzed homocoupling of organosilicon compounds: synthesis of biaryls, dienes and diynes. J Chem Soc Perkin Trans 1:797–798CrossRefGoogle Scholar
  25. 25.
    Oh CH, Reddy VR (2004) A mild and efficient palladium-catalyzed homocoupling of lithium alkynyltriisopropoxyborates: a new route to synthesis of 1,3-diynes. Tetrahedron Lett 45:5221–5224CrossRefGoogle Scholar
  26. 26.
    Carrettin S, Guzman J, Corma A (2005) Supported gold catalyzes the homocoupling of phenylboronic acid with high conversion and selectivity. Angew Chem Int Ed 44:2242–2245CrossRefGoogle Scholar
  27. 27.
    Gonzalez-Arellano C, Corma A, Iglesias M, Sanchez F (2005) Homogeneous and heterogenized au(III) Schiff base-complexes as selective and general catalysts for self-coupling of arylboronic acids. Chem Commun:1990–1992Google Scholar
  28. 28.
    Kanth SR, Reddy GV, Yakaiah T, Narsaiah B, Rao PS (2006) ZnBr2-catalyzed efficient oxidative homo coupling of aryl magnesium bromides. Synth Commun 36:3079–3084CrossRefGoogle Scholar
  29. 29.
    Paixao MW, Weber M, Braga AL, de Azeredo JB, Deobald AM, Stefani HA (2008) Copper salt-catalyzed homo-coupling reaction of potassium alkynyltrifluoroborates: a simple and efficient synthesis of symmetrical 1,3-diynes. Tetrahedron Lett 49:2366–2370CrossRefGoogle Scholar
  30. 30.
    Luque R, Baruwati B, Varma RS (2010) Magnetically separable nanoferrite-anchored glutathione. Aqueous homocoupling of aryl-boronic acids under microwave irradiation. Green Chem 12:1540–1543CrossRefGoogle Scholar
  31. 31.
    Monopoli A et al (2014) Design of novel indium oxide supported gold nanocatalysts and their application in homocoupling of arylboronic acids. J Mol Catal A Chem 386:101–107CrossRefGoogle Scholar
  32. 32.
    Kang S-K, Baik T-G, Jiao XH, Lee Y-T (1999) Copper- and manganese-catalyzed homocoupling of organostannanes in the presence of iodine. Tetrahedron Lett 40:2383–2384CrossRefGoogle Scholar
  33. 33.
    Parrish JP, Flanders VL, Floyd RJ, Jung KW (2001) Mild and efficient formation of symmetric biaryls via Pd(II) catalysts and cu(II) oxidants. Tetrahedron Lett 42:7729–7731CrossRefGoogle Scholar
  34. 34.
    Koza DJ, Carita E (2002) An efficient high yielding approach for the homocoupling of arylboronic acids. Synthesis:2183–2186Google Scholar
  35. 35.
    Klingensmith LM, Leadbeater NE (2003) Ligand-free palladium catalysis of aryl coupling reactions facilitated by grinding. Tetrahedron Lett 44:765–768CrossRefGoogle Scholar
  36. 36.
    Singh FV, Amaral MFZJ, Stefani HA (2009) Synthesis of symmetrical 1,3-diynes via homocoupling reaction of n-butyl alkynyltellurides. Tetrahedron Lett 50:2636–2639CrossRefGoogle Scholar
  37. 37.
    Falck JR, Mohapatra S, Bondlela M, Venkataraman SK (2002) Homocoupling of alkyl-, alkenyl-, and arylboronic acids. Tetrahedron Lett 43:8149–8151CrossRefGoogle Scholar
  38. 38.
    Weber M, Singh FV, Vieira AS, Stefani HA, Paixao MW (2009) Palladium-catalyzed oxidative homocoupling of potassium alkenyltrifluoroborates: synthesis of symmetrical 1,3-dienes. Tetrahedron Lett 50:4324–4327CrossRefGoogle Scholar
  39. 39.
    Yamaguchi S, Ohno S, Tamao K (1997) Pd(II)-catalyzed oxidative homocoupling of aryl-metal compounds using acrylate dibromide derivatives as effective oxidants. Synlett 1997:1199–1201CrossRefGoogle Scholar
  40. 40.
    Kang S-K, Namkoong E-Y, Yamaguchi T (1997) Palladium-catalyzed homocoupling of organostannanes. Synth Commun 27:641–646CrossRefGoogle Scholar
  41. 41.
    Wright ME, Porsch MJ, Buckley C, Cochran BB (1997) A novel palladium-catalyzed Homocoupling of Alkynylstannanes: a new synthetic approach to extended linear-carbon polymers. J Am Chem Soc 119:8393–8394CrossRefGoogle Scholar
  42. 42.
    Nagano T, Hayashi T (2005) Iron-catalyzed oxidative homo-coupling of aryl Grignard reagents. Org Lett 7:491–493PubMedCrossRefGoogle Scholar
  43. 43.
    Cahiez G, Chaboche C, Mahuteau-Betzer F, Ahr M (2005) Iron-catalyzed Homo-coupling of simple and functionalized Arylmagnesium reagents. Org Lett 7:1943–1946PubMedCrossRefGoogle Scholar
  44. 44.
    Kude K, Hayase S, Kawatsura M, Itoh T (2011) Iron-catalyzed quick homocoupling reaction of aryl or alkynyl Grignard reagents using a phosphonium ionic liquid solvent system. Heteroat Chem 22:397–404CrossRefGoogle Scholar
  45. 45.
    Nagano T, Hayashi T (2005) Silver-catalyzed alkyl-alkyl homo-coupling of Grignard reagents. Chem Lett 34:1152–1153CrossRefGoogle Scholar
  46. 46.
    Zhou Z, Xue W (2009) Manganese-catalyzed oxidative homo-coupling of aryl Grignard chlorides. J Organomet Chem 694:599–603CrossRefGoogle Scholar
  47. 47.
    Cahiez G, Foulgoc L, Moyeux A (2009) Iron-catalyzed oxidative heterocoupling between aliphatic and aromatic organozinc reagents: a novel pathway for functionalized aryl-alkyl cross-coupling reactions. Angew Chem Int Ed 48:2969–2972CrossRefGoogle Scholar
  48. 48.
    Tamao K, Ohno S, Yamaguchi S (1996) Silole-containing ÏO-conjugated polymers. 6. Silole-pyrrole cooligomers: their synthesis, structure and UV-VIS absorption spectra. Chem Commun:1873–1874Google Scholar
  49. 49.
    Lei A, Srivastava M, Zhang X (2002) Transmetalation of palladium Enolate and its application in palladium-catalyzed Homocoupling of alkynes: a room-temperature, highly efficient route to make Diynes. J Org Chem 67:1969–1971PubMedCrossRefGoogle Scholar
  50. 50.
    Lei A, Zhang X (2002) A novel palladium-catalyzed homocoupling reaction initiated by transmetalation of palladium enolates. Tetrahedron Lett 43:2525–2528CrossRefGoogle Scholar
  51. 51.
    Lei A, Zhang X (2002) Palladium-catalyzed Homocoupling reactions between two Csp3-Csp3 centers. Org Lett 4:2285–2288PubMedCrossRefGoogle Scholar
  52. 52.
    Cheng K, Xin B, Zhang Y (2007) The Pd(OAc)2-catalyzed homocoupling of arylboronic acids in water and ionic liquid. J Mol Catal A Chem 273:240–243CrossRefGoogle Scholar
  53. 53.
    Zhao Y, Wang H, Hou X, Hu Y, Lei A, Zhang H, Zhu L (2006) Oxidative cross-coupling through double Transmetallation: surprisingly high selectivity for palladium-catalyzed cross-coupling of Alkylzinc and Alkynylstannanes. J Am Chem Soc 128:15048–15049PubMedCrossRefGoogle Scholar
  54. 54.
    Jin L, Zhao Y, Wang H, Lei A (2008) Palladium-catalyzed R(sp3)-Zn/R(sp)-SnBu3 oxidative cross-coupling. Synthesis:649–654Google Scholar
  55. 55.
    Jin L, Zhao Y, Zhu L, Zhang H, Lei A (2009) Highly selective palladium-catalyzed oxidative Csp2-Csp3 cross-coupling of arylzinc and alkylindium reagents through double transmetalation. Adv Synth Catal 351:630–634CrossRefGoogle Scholar
  56. 56.
    Liebeskind LS, Riesinger SW (1991) Palladium-catalyzed oxidative dimerization of stannylquinones. A simple method for the synthesis of symmetrical 2,2′-bisquinones. Tetrahedron Lett 32:5681–5682CrossRefGoogle Scholar
  57. 57.
    Yamamoto Y (2007) Homocoupling of arylboronic acids with a catalyst system consisting of a palladium(II) N-heterocyclic carbene complex and p-benzoquinone. Synlett 2007:1913–1916CrossRefGoogle Scholar
  58. 58.
    Yu J, Liu J, Shi G, Shao C, Zhang Y (2015) Ligand-promoted oxidative cross-coupling of aryl Boronic acids and aryl Silanes by palladium catalysis. Angew Chem Int Ed 54:4079–4082CrossRefGoogle Scholar
  59. 59.
    Zhu Y, Xiong T, Han W, Shi Y (2014) Copper-catalyzed oxidative Homo- and cross-coupling of Grignard reagents using Diaziridinone. Org Lett 16:6144–6147PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Kanemoto S, Matsubara S, Oshima K, Utimoto K, Nozaki H (1987) Syntheses of 1,3- and 1,4-dienes by the oxidative coupling of 1-alkenylstannanes and 2-alkenylstannanes in the presence of palladium catalyst. Chem Lett 16:5–6CrossRefGoogle Scholar
  61. 61.
    Tolstikov GA, Miftakhov MS, Danilova NA, Vel'der YL, Spirkhin LV (1989) A convenient synthesis of symmetrically functionalized 1,3-dienes by palladium(II)-catalyzed homocoupling of 1-alkenylstannanes. Synthesis 1989:633–634CrossRefGoogle Scholar
  62. 62.
    Hossain KM, Kameyama T, Shibata T, Takagi K (2001) Palladium-catalyzed synthesis of biaryls from arylzinc compounds using N-chlorosuccinimide or oxygen as an oxidant. Bull Chem Soc Jpn 74:2415–2420CrossRefGoogle Scholar
  63. 63.
    Kabalka GW, Wang L (2002) Ligandless palladium chloride-catalyzed homo-coupling of arylboronic acids in aqueous media. Tetrahedron Lett 43:3067–3068CrossRefGoogle Scholar
  64. 64.
    Shirakawa E, Nakao Y, Murota Y, Hiyama T (2003) Palladium-iminophosphine-catalyzed homocoupling of alkynylstannanes and other organostannanes using allyl acetate or air as an oxidant. J Organomet Chem 670:132–136CrossRefGoogle Scholar
  65. 65.
    Vogler T, Studer A (2008) Rhodium-catalyzed oxidative homocoupling of boronic acids. Adv Synth Catal 350:1963–1967CrossRefGoogle Scholar
  66. 66.
    Alcaraz L, Taylor RJK (1997) Efficient conditions for the palladium(II)-mediated coupling of organostannanes. The synthesis of 1,3-dienes, 1,4-dienes, 1,3-diynes, and biphenyls. Synlett 1997:791–792CrossRefGoogle Scholar
  67. 67.
    Shirakawa E, Murota Y, Nakao Y, Hiyama T (1997) Homocoupling of organostannanes catalyzed by iminophosphine-palladium. Synlett 1997:1143–1144CrossRefGoogle Scholar
  68. 68.
    Wong MS, Zhang XL (2001) Ligand promoted palladium-catalyzed homo-coupling of arylboronic acids. Tetrahedron Lett 42:4087–4089CrossRefGoogle Scholar
  69. 69.
    Yoshida H, Yamaryo Y, Ohshita J, Kunai A (2003) Activator-free oxidative homocoupling of organosilanes catalyzed by a palladium-DPPP complex. Chem Commun:1510–1511Google Scholar
  70. 70.
    Zhou L, Xu QX, Jiang HF (2007) Palladium-catalyzed homo-coupling of boronic acids with supported reagents in supercritical carbon dioxide. Chin Chem Lett 18:1043–1046CrossRefGoogle Scholar
  71. 71.
    Xu Z, Mao J, Zhang Y (2007) Pd(OAc)2-catalyzed room temperature homocoupling reaction of arylboronic acids under air without ligand. Catal Commun 9:97–100CrossRefGoogle Scholar
  72. 72.
    Chen J-S, Krogh-Jespersen K, Khinast JG (2008) Base- and ligand-free heterogeneously catalyzed homocoupling of arylboronic acids. J Mol Catal A Chem 285:14–19CrossRefGoogle Scholar
  73. 73.
    Prastaro A, Ceci P, Chiancone E, Boffi A, Fabrizi G, Cacchi S (2010) Homocoupling of arylboronic acids and potassium aryltrifluoroborates catalyzed by protein-stabilized palladium nanoparticles under air in water. Tetrahedron Lett 51:2550–2552CrossRefGoogle Scholar
  74. 74.
    Wu N, Li X, Xu X, Wang Y, Xu Y, Chen X (2010) Homocoupling reaction of aryl boronic acids catalyzed by Pd(OAc)2/K2CO3 in water under air atmosphere. Lett Org Chem 7:11–14CrossRefGoogle Scholar
  75. 75.
    Zhou Z, Hu Q, Du Z, Xue J, Zhang S, Xie Y (2012) Pd-catalyzed oxidative homocoupling of arylboronic acids in aqueous ethanol at room temperature. Synth React Inorg Met Org Nano-Met Chem 42:940–943CrossRefGoogle Scholar
  76. 76.
    Dwivedi S, Bardhan S, Ghosh P, Das S (2014) A green protocol for the Pd catalyzed ligand free homocoupling reaction of arylboronic acids under ambient conditions. RSC Adv 4:41045–41050CrossRefGoogle Scholar
  77. 77.
    Kapdi AR, Dhangar G, Serrano JL, De Haro JA, Lozano P, Fairlamb IJS (2014) [Pd(Phbz)(X)(PPh3)] palladacycles promote the base-free homocoupling of arylboronic acids in air at room temperature. RSC Adv 4:55305–55312CrossRefGoogle Scholar
  78. 78.
    Adamo C, Amatore C, Ciofini I, Jutand A, Lakmini H (2006) Mechanism of the palladium-catalyzed Homocoupling of Arylboronic acids: key involvement of a palladium Peroxo complex. J Am Chem Soc 128:6829–6836PubMedCrossRefGoogle Scholar
  79. 79.
    Sakurai H, Tsunoyama H, Tsukuda T (2007) Oxidative homo-coupling of potassium aryltrifluoroborates catalyzed by gold nanocluster under aerobic conditions. J Organomet Chem 692:368–374CrossRefGoogle Scholar
  80. 80.
    Matsuda T, Asai T, Shiose S, Kato K (2011) Homocoupling of arylboronic acids catalyzed by simple gold salts. Tetrahedron Lett 52:4779–4781CrossRefGoogle Scholar
  81. 81.
    Zheng J, Lin S, Zhu X, Jiang B, Yang Z, Pan Z (2012) Reductant-directed formation of PS-PAMAM-supported gold nanoparticles for use as highly active and recyclable catalysts for the aerobic oxidation of alcohols and the homocoupling of phenylboronic acids. Chem Commun 48:6235–6237CrossRefGoogle Scholar
  82. 82.
    Palashuddin Sk M, Jana CK, Chattopadhyay A (2013) A gold-carbon nanoparticle composite as an efficient catalyst for homocoupling reaction. Chem Commun 49:8235–8237CrossRefGoogle Scholar
  83. 83.
    Gao L, Nishikata T, Kojima K, Chikama K, Nagashima H (2013) Water- and Organo-dispersible gold nanoparticles supported by using ammonium salts of Hyperbranched polystyrene: preparation and catalysis. Chem Asian J 8:3152–3163PubMedCrossRefGoogle Scholar
  84. 84.
    Wang L, Wang H, Zhang W, Zhang J, Lewis JP, Meng X, Xiao F-S (2013) Aerobic homocoupling of phenylboronic acid on mg-Al mixed-oxides-supported au nanoparticles. J Catal 298:186–197CrossRefGoogle Scholar
  85. 85.
    Kirai N, Yamamoto Y (2009) Homocoupling of Arylboronic acids catalyzed by 1,10-Phenanthroline-ligated copper complexes in air. Eur J Org Chem 2009:1864–1867CrossRefGoogle Scholar
  86. 86.
    Cheng G, Luo M (2011) Homocoupling of Arylboronic acids catalyzed by CuCl in air at room temperature. Eur J Org Chem 2011:2519–2523CrossRefGoogle Scholar
  87. 87.
    Kaboudin B, Mostafalu R, Yokomatsu T (2013) Fe3O4 nanoparticle-supported cu(II)-Î2-cyclodextrin complex as a magnetically recoverable and reusable catalyst for the synthesis of symmetrical biaryls and 1,2,3-triazoles from aryl boronic acids. Green Chem 15:2266–2274CrossRefGoogle Scholar
  88. 88.
    Hua S-K, Hu Q-P, Ren J, Zeng B-B (2013) Dilithium tetrachlorocuprate(II) catalyzed oxidative homocoupling of functionalized Grignard reagents. Synthesis 45:518–526CrossRefGoogle Scholar
  89. 89.
    Cahiez G, Moyeux A, Buendia J, Duplais C (2007) Manganese- or Iron-catalyzed homocoupling of Grignard reagents using atmospheric oxygen as an oxidant. J Am Chem Soc 129:13788–13789PubMedCrossRefGoogle Scholar
  90. 90.
    Liu W, Lei A (2008) Efficient Fe-catalyzed homo-coupling of aryl Grignard reagents using O2 as the oxidant. Tetrahedron Lett 49:610–613CrossRefGoogle Scholar
  91. 91.
    Mayer M, Czaplik WM, von Wangelin AJ (2009) On cobalt-catalyzed biaryl coupling reactions. Synlett:2919–2923Google Scholar
  92. 92.
    Aparna PI, Bhat BR (2012) Homocoupling of aryl Grignard reagents to form biaryls using ruthenium(III) complex, [RuCl(C3S5)(H2O)(PPh3)2]. J Mol Catal A Chem 358:73–78CrossRefGoogle Scholar
  93. 93.
    Sophiphun O, Wittayakun J, Dhital RN, Haesuwannakij S, Murugadoss A, Sakurai H (2012) Gold/palladium bimetallic alloy nanoclusters stabilized by chitosan as highly efficient and selective catalysts for Homocoupling of Arylboronic acid. Aust J Chem 65:1238–1243CrossRefGoogle Scholar
  94. 94.
    Bhat API, Inam F, Bhat BR (2013) One-step synthesis of Biaryls under mild conditions. Eur J Org Chem 2013:7139–7144CrossRefGoogle Scholar
  95. 95.
    Cahiez G, Duplais C, Buendia J (2009) Manganese-catalyzed oxidative cross-coupling of Grignard reagents with oxygen as an oxidant. Angew Chem Int Ed 48:6731–6734CrossRefGoogle Scholar
  96. 96.
    Chen M, Zheng X, Li W, He J, Lei A (2010) Palladium-catalyzed aerobic oxidative cross-coupling reactions of terminal alkynes with Alkylzinc reagents. J Am Chem Soc 132:4101–4103PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Kiefer G, Jeanbourquin L, Severin K (2013) Oxidative coupling reactions of Grignard reagents with nitrous oxide. Angew Chem Int Ed 52:6302–6305CrossRefGoogle Scholar
  98. 98.
    Mizuno H, Sakurai H, Amaya T, Hirao T (2006) Oxovanadium(v)-catalyzed oxidative biaryl synthesis from organoborate under O2. Chem Commun:5042–5044Google Scholar
  99. 99.
    Liu KM, Liao LY, Duan XF (2015) Iron catalyzed oxidative assembly of N-heteroaryl and aryl metal reagents using oxygen as an oxidant. Chem Commun 51:1124–1127CrossRefGoogle Scholar
  100. 100.
    Liu KM, Wei J, Duan XF (2015) Iron-catalyzed oxidative biaryl cross-couplings via mixed diaryl titanates: significant influence of the order of combining aryl Grignard reagents with titanate. Chem Commun 51:4655–4658CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Nanchang UniversityNanchangChina

Personalised recommendations