Advertisement

A Delta-Diagram Based Synthesis for Cross Layer Optimization Modeling of IoT

  • Prathap Siddavaatam
  • Reza Sedaghat
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10990)

Abstract

Internet of Things is a networking platform where billions of every day devices communicate intelligently making every day communication highly informative. The IoT defines a world-wide cyber-physical system with a plethora of applications in the fields of demotics, e-health, goods monitoring and logistics, among others. The use of cross-layer communication schemes to provide adaptive solutions for the IoT is motivated by the high heterogeneity in the hardware capabilities and the communication requirements among things. In this article, a novel Delta Diagram synthesis for the IoT is proposed to accurately capture both the high heterogeneity of the IoT and the impact of the Internet as part of the network architecture. Furthermore, a novel modified Grey Wolf Optimizer framework is proposed to obtain optimal routing paths and the communication parameters among things, by exploiting the interrelations among different layer functionalities in the IoT. Moreover, a cross-layer communication protocol is utilized to implement and test this optimization framework in practical scenarios. The results show that the proposed solution can achieve a global communication optimum and outperforms existing layered solutions. The novel Delta-diagram is a preliminary step towards providing efficient and reliable end-to-end communication in the IoT which may be extended to other dimensions of IoT like security and hardware synthesis.

Keywords

Internet of Things (IoT) Network architecture Synthesis Wireless Sensor Networks Delta diagram Grey Wolf Optimizer Cross-layer optimization 

References

  1. 1.
    Sinha, R.S., Wei, Y., Hwang, S.H.: A survey on LPWA technology: LoRa and Nb-IoT. ICT Express 3(1), 14–21 (2017)CrossRefGoogle Scholar
  2. 2.
    Sah, D.K., Amgoth, T.: Parametric survey on cross-layer designs for wireless sensor networks. Comput. Sci. Rev. 27, 112–134 (2018)MathSciNetCrossRefGoogle Scholar
  3. 3.
    IEEE 802.15: IEEE 802.15 wireless personal area networks task group 4, January 2016. http://www.ieee802.org/15/pub/TG4.htm
  4. 4.
    Akyildiz, I.F., Vuran, M.C.: XLP: a cross-layer protocol for efficient communication in wireless sensor networks. IEEE Trans. Mob. Comput. 9, 1578–1591 (2010)CrossRefGoogle Scholar
  5. 5.
    Akyildiz, I.F., Wang, X.: Cross-layer design in wireless mesh networks. IEEE Trans. Veh. Technol. 57(2), 1061–1076 (2008)CrossRefGoogle Scholar
  6. 6.
    Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., Ayyash, M.: Internet of Things: a survey on enabling technologies, protocols, and applications. IEEE Commun. Surv. Tutor. 17(4), 2347–2376 (2016)CrossRefGoogle Scholar
  7. 7.
    Al-Karaki, J.N., Kamal, A.E.: Routing techniques in wireless sensor networks: a survey. IEEE Wirel. Commun. 11(6), 6–28 (2004)CrossRefGoogle Scholar
  8. 8.
    Almesaeed, R., Ameen, A.S., Doufexi, A., Dahnoun, N., Nix, A.R.: A comparison study of 2D and 3D ITU channel model. In: 2013 IFIP Wireless Days (WD), pp. 1–7, November 2013Google Scholar
  9. 9.
    Ammar, A.B., Dziri, A., Terre, M., Youssef, H.: Multi-hop leach based cross-layer design for large scale wireless sensor networks. In: 2016 International Wireless Communications and Mobile Computing Conference (IWCMC), pp. 763–768, September 2016Google Scholar
  10. 10.
    Aslani, Z., Aijaz, A.: COOP-RPL: a cooperative approach to RPL-based routing in smart grid AMI networks. CoRR abs/1706.05134 (2017)Google Scholar
  11. 11.
    Bormann, C., Toutain, L., Cragie, R.: IPv6 over low-power wireless personal area network (6LowPAN) routing header (2017)Google Scholar
  12. 12.
    Buonaccorsi, N., Cicconetti, C., Mambrini, R., Podias, N., Russell, P.: ETSI M2M release 1 demonstration. In: 2012 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), pp. 1–3 (2012)Google Scholar
  13. 13.
    Cam, L.L.: The central limit theorem around 1935. Stat. Sci. 1(1), 78–91 (1986)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Centenaro, M., Vangelista, L., Zanella, A., Zorzi, M.: Long-range communications in unlicensed bands: the rising stars in the IoT and smart city scenarios. IEEE Wirel. Commun. 23(5), 60–67 (2016)CrossRefGoogle Scholar
  15. 15.
    Chai, F., Zhu, T., Kang, K.D.: A link-correlation-aware cross-layer protocol for IoT devices. In: 2016 IEEE International Conference on Communications (ICC), pp. 1–6, May 2016Google Scholar
  16. 16.
    Chze, P.L.R., Leong, K.S., Wee, A.K., Sim, E., May, K.E., Wing, H.S.: Cross-layer secured IoT network and devices. In: Handa, H., Ishibuchi, H., Ong, Y.-S., Tan, K.-C. (eds.) Proceedings of the 18th Asia Pacific Symposium on Intelligent and Evolutionary Systems - Volume 2. PALO, vol. 2, pp. 319–333. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-13356-0_26CrossRefGoogle Scholar
  17. 17.
    Conti, M., Maselli, G., Turi, G., Giordano, S.: Cross-layering in mobile ad hoc network design. Computer 37(2), 48–51 (2004)CrossRefGoogle Scholar
  18. 18.
    Culler, D.E., Hui, J.: 6LowPAN tutorial IP on IEEE 802.15.4 low-power wireless networks (2007)Google Scholar
  19. 19.
    Dixon, C., et al.: An operating system for the home. In: Proceedings of the 9th USENIX Conference on Networked Systems Design and Implementation, NSDI 2012, pp. 25–25. USENIX Association, Berkeley (2012)Google Scholar
  20. 20.
    Dong, Y., Chang, C.H.: An improved autonomous cross-layer optimization framework for wireless multimedia communication. In: 2014 IEEE/ACIS 13th International Conference on Computer and Information Science (ICIS), pp. 53–58, June 2014Google Scholar
  21. 21.
    El-atty, S.M.A.: Efficient packet scheduling with pre-defined QOS using cross-layer technique in wireless networks. In: 11th IEEE Symposium on Computers and Communications (ISCC 2006), pp. 820–826, June 2006Google Scholar
  22. 22.
    Essa, A.A., Zhang, X., Wu, P., Abuzneid, A.: ZigBee network using low power techniques and modified LEACH protocol. In: 2017 IEEE Long Island Systems, Applications and Technology Conference (LISAT), pp. 1–5, May 2017Google Scholar
  23. 23.
    Fröhlich, A.A., Okazaki, A.M., Steiner, R.V., Oliveira, P., Martina, J.E.: A cross-layer approach to trustfulness in the Internet of Things. In: 16th IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing (ISORC 2013), pp. 1–8, June 2013Google Scholar
  24. 24.
    Fu, F., van der Schaar, M.: A new systematic framework for autonomous cross-layer optimization. IEEE Trans. Veh. Technol. 58(4), 1887–1903 (2009)CrossRefGoogle Scholar
  25. 25.
    Gomez, C., Paradells, J., Bormann, C., Crowcroft, J.: From 6LoWPAN to 6Lo: expanding the universe of IPv6-supported technologies for the Internet of Things. IEEE Commun. Mag. 55(12), 148–155 (2017)CrossRefGoogle Scholar
  26. 26.
    Granjal, J., Monteiro, E., Silva, J.S.: Security for the Internet of Things: a survey of existing protocols and open research issues. IEEE Commun. Surv. Tutor. 17(3), 1294–1312 (2015)CrossRefGoogle Scholar
  27. 27.
    Gutierrez, J.A., Naeve, M., Callaway, E., Bourgeois, M., Mitter, V., Heile, B.: IEEE 802.15.4: a developing standard for low-power low-cost wireless personal area networks. IEEE Netw. 15(5), 12–19 (2001)CrossRefGoogle Scholar
  28. 28.
    Han, C., Jornet, J.M., Fadel, E., Akyildiz, I.F.: A cross-layer communication module for the Internet of Things. Comput. Netw. 57(3), 622–633 (2013)CrossRefGoogle Scholar
  29. 29.
    Hansen, C.J.: Internetworking with Bluetooth low energy. GetMobile Mob. Comput. Commun. 19(2), 34–38 (2015)CrossRefGoogle Scholar
  30. 30.
    Hasan, N., Ali, M., Barradas, A., Correia, N.: Cross-layer optimization for reliability improvement of data delivery in 6LoWPAN-based networks. In: 2015 14th Annual Mediterranean Ad Hoc Networking Workshop (MED-HOC-NET), pp. 1–7, June 2015Google Scholar
  31. 31.
    Hong, Y.G., Gomez, C., Sangi, A.R., Aanstoot, T.: IPv6 over Constrained Node Networks (6Lo) Applicability & Use cases. Internet-Draft draft-ietf-6lo-use-cases-01, Internet Engineering Task Force. Work in Progress. https://datatracker.ietf.org/doc/html/draft-ietf-6lo-use-cases-01
  32. 32.
    Hu, P.: A system architecture for software-defined industrial Internet of Things. In: 2015 IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB), pp. 1–5, October 2015Google Scholar
  33. 33.
    Huang, P., Xiao, L., Soltani, S., Mutka, M.W., Xi, N.: The evolution of MAC protocols in wireless sensor networks: a survey. IEEE Commun. Surv. Tutor. 15(1), 101–120 (2013)CrossRefGoogle Scholar
  34. 34.
    Huber, P.J.: The behavior of maximum likelihood estimates under nonstandard conditions. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Statistics, pp. 221–233. University of California Press, Berkeley (1967)Google Scholar
  35. 35.
    Iqbal, M., Naeem, M., Anpalagan, A., Ahmed, A., Azam, M.: Wireless sensor network optimization: multi-objective paradigm. Sensors 15(7), 17572–17620 (2015)CrossRefGoogle Scholar
  36. 36.
    Ishaq, I., et al.: IETF standardization in the field of the Internet of Things (IoT): a survey. J. Sens. Actuator Netw. 2(2), 235–287 (2013)CrossRefGoogle Scholar
  37. 37.
    Kafi, M.A., Othman, J.B., Badache, N.: A survey on reliability protocols in wireless sensor networks. ACM Comput. Surv. 50(2), 31:1–31:47 (2017)CrossRefGoogle Scholar
  38. 38.
    Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24777-7CrossRefzbMATHGoogle Scholar
  39. 39.
    Kim, H.S., Ko, J., Culler, D.E., Paek, J.: Challenging the IPv6 routing protocol for low-power and lossy networks (RPL): a survey. IEEE Commun. Surv. Tutor. 19(4), 2502–2525 (2017)CrossRefGoogle Scholar
  40. 40.
    Kumar, K., Kumar, S., Kaiwartya, O., Cao, Y., Lloret, J., Aslam, N.: Cross-layer energy optimization for IoT environments: technical advances and opportunities. Energies 10(12) (2017)CrossRefGoogle Scholar
  41. 41.
    Latchman, H.A., Katar, S., Yonge, L., Gavette, S.: HomePlug AV and IEEE 1901: A Handbook for PLC Designers and Users, 1st edn. Wiley-IEEE Press, Hoboken (2013)CrossRefGoogle Scholar
  42. 42.
    Le, N.T., Jang, Y.M.: Energy-efficient coverage guarantees scheduling and routing strategy for wireless sensor networks. Int. J. Distrib. Sen. Netw. 11(8), 612383 (2015)CrossRefGoogle Scholar
  43. 43.
    Levis, P., Patel, N., Culler, D., Shenker, S.: Trickle: a self-regulating algorithm for code propagation and maintenance in wireless sensor networks. In: Proceedings of the First USENIX/ACM Symposium on Networked Systems Design and Implementation (NSDI), pp. 15–28 (2004)Google Scholar
  44. 44.
    Liu, Y., Seet, B.C., Al-Anbuky, A.: Ambient intelligence context-based cross-layer design in wireless sensor networks. Sensors 14(10), 19057–19085 (2014)CrossRefGoogle Scholar
  45. 45.
    Marais, J.M., Malekian, R., Abu-Mahfouz, A.M.: LoRa and LoRaWAN testbeds: a review. In: 2017 IEEE AFRICON, pp. 1496–1501, September 2017Google Scholar
  46. 46.
    Marler, R., Arora, J.: Survey of multi-objective optimization methods for engineering. Struct. Multidiscip. Optim. 26(6), 369–395 (2004)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Mathur, S., Saha, D., Raychaudhuri, D.: Cross-layer MAC/PHY protocol to support IoT traffic in 5G: poster. In: Proceedings of the 22nd Annual International Conference on Mobile Computing and Networking, MobiCom 2016, pp. 467–468. ACM, New York (2016)Google Scholar
  48. 48.
    Mikhaylov, K., Petaejaejaervi, J., Haenninen, T.: Analysis of capacity and scalability of the LoRa low power wide area network technology. In: European Wireless 2016; 22th European Wireless Conference, pp. 1–6, May 2016Google Scholar
  49. 49.
    Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)CrossRefGoogle Scholar
  50. 50.
    Nguyen, H.X., Roughan, M.: Rigorous statistical analysis of internet loss measurements. IEEE/ACM Trans. Netw. 21(3), 734–745 (2013)CrossRefGoogle Scholar
  51. 51.
    Park, M.: IEEE 802.11ah: sub-1-GHz license-exempt operation for the Internet of Things. IEEE Commun. Mag. 53(9), 145–151 (2015)CrossRefGoogle Scholar
  52. 52.
    Patil, M., Biradar, R.C.: A survey on routing protocols in wireless sensor networks. In: 2012 18th IEEE International Conference on Networks (ICON), pp. 86–91, December 2012Google Scholar
  53. 53.
    Pompili, D., Akyildiz, I.F.: A multimedia cross-layer protocol for underwater acoustic sensor networks. IEEE Trans. Wirel. Commun. 9(9), 2924–2933 (2010)CrossRefGoogle Scholar
  54. 54.
    IROL Power, Lossy Networks (ROLL): IETF routing over low power and lossy networks (ROLL), January 2016. http://datatracker.ietf.org/doc/charter-ietf-roll/
  55. 55.
    Ratasuk, R., Vejlgaard, B., Mangalvedhe, N., Ghosh, A.: NB-IoT system for M2M communication. In: 2016 IEEE Wireless Communications and Networking Conference, pp. 1–5, April 2016Google Scholar
  56. 56.
    Ray, P.P., Agarwal, S.: Bluetooth 5 and Internet of Things: potential and architecture. In: 2016 International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES), pp. 1461–1465, October 2016Google Scholar
  57. 57.
    Ray, P.: A survey on Internet of Things architectures. J. King Saud Univ. Comput. Inf. Sci. 30, 291–319 (2016)Google Scholar
  58. 58.
    Resner, D., de Araujo, G.M., Fröhlich, A.A.: On the impact of dynamic routing metrics on a geographic protocol for WSNs. In: 2016 VI Brazilian Symposium on Computing Systems Engineering (SBESC), pp. 109–115, November 2016Google Scholar
  59. 59.
    Resner, D., de Araujo, G.M., Fröhlich, A.A.: Design and implementation of a cross-layer IoT protocol. Sci. Comput. Program. (2017)Google Scholar
  60. 60.
    Roh, H.T., Lee, J.W.: Cross-layer optimization for wireless sensor networks with RF energy transfer. In: 2014 International Conference on Information and Communication Technology Convergence (ICTC), pp. 919–923, October 2014Google Scholar
  61. 61.
    Shrestha, B.: Analysis of hybrid CSMA/CA-TDMA channel access schemes with application to wireless sensor networks. Ph.D. thesis, The University of Manitoba, Winnipeg, July 2013. Hybrid CSMAGoogle Scholar
  62. 62.
    Siddavaatam, P., Sedaghat, R., Sharma, A.T.: intel-LEACH: an optimal framework for node selection using dynamic clustering for wireless sensor networks. In: 2017 12th IEEE International Conference for Internet Technology and Secured Transactions (ICITST), pp. 136–146, December 2017Google Scholar
  63. 63.
    Siddavaatam, P., Sedaghat, R., Sharma, A.T.: A novel multi-objective optimization approach for design flow in high level synthesis, vol. 55, pp. 990–1004 (2018)Google Scholar
  64. 64.
    Tanenbaum, A., Wetherall, D.: Computer Networks. Pearson Prentice Hall, Upper Saddle River (2011)Google Scholar
  65. 65.
    Thubert, P., Wetterwald, P., Vasseur, J.P., Michel, E.: Reverse directed acyclic graph for multiple path reachability from origin to identified destination via multiple target devices (2015)Google Scholar
  66. 66.
    Vilajosana, X., Wang, Q., Chraim, F., Watteyne, T., Chang, T., Pister, K.S.J.: A realistic energy consumption model for TSCH networks. IEEE Sens. J. 14(2), 482–489 (2014)CrossRefGoogle Scholar
  67. 67.
    Vuran, M.C., Akyildiz, I.F.: Error control in wireless sensor networks: a cross layer analysis. IEEE/ACM Trans. Netw. 17(4), 1186–1199 (2009)CrossRefGoogle Scholar
  68. 68.
    Ye, W., Heidemann, J., Estrin, D.: Medium access control with coordinated adaptive sleeping for wireless sensor networks. IEEE/ACM Trans. Netw. 12(3), 493–506 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.OPRA-LabsRyerson UniversityTorontoCanada

Personalised recommendations