Advertisement

Industrial Approach for Direct Electrochemical CO2 Reduction in Aqueous Electrolytes

  • Maximilian FleischerEmail author
  • P. Jeanty
  • K. Wiesner-Fleischer
  • O. Hinrichsen
Chapter
Part of the ATZ/MTZ-Fachbuch book series (ATZMTZ)

Abstract

With the unprecedented rise of renewable energies, we will experience a profound change of our energy system, moving away from an unsustainable unidirectional energy system to a stable cyclic energy system. Carbon dioxide (CO2) is a product unavoidably coupled to the energy production for electricity generation or transport based on fossil fuels and the emission need to be reduced. Economic solutions for storage or conversion possibilities of large quantities of energy are essential in the future due the volatility of renewable electricity. This article will look into the industrial aspects of a new technology that converts collected CO2 into fuel precursors using renewable energy, thus opening a path for CO2 neutral transportation keeping combustion engines or hybrid concepts.

The standard method to make green fuel would be to collect CO2 and to let it react with green Hydrogen (H2) from water electrolysis powered by renewable energy. This happens in a high-temperature catalytic bed reactor, already scaled up by chemical industry. As a potentially advantageous technological path, recent research opened up the pathway of a direct electrochemical reduction of the CO2. This can be done at room temperature using water based electrolytes. To reach industrially relevant reaction rates, a technology called “gas diffusion electrode” must be employed which is the key to sufficient access of the CO2 to the cathode performing the reaction. There are already well established catalysts like silver for the production of CO/syngas, whereas catalysts for the direct generation of hydrocarbons out of CO2 are under research. The first steps of applied work towards the industrialization of such a technology are described.

Keywords

Synthetic fuel Electrolysis Water based electrolyte Direct CO2 reduction Gas diffusion electrode Upscale Carbon monoxide Syngas 

References

  1. 1.
    Perez R (2015) A fundamental look at supply side energy reserves for the planet. In: The International Energy Agency SHC programme solar updateGoogle Scholar
  2. 2.
    Hartmann N, Eltrop L, Bauer N, Salzer J, Schwarz S, Schmidt M (2012) Strom-speicherpotenziale für Deutschland, Report. University Stuttgart, GermanyGoogle Scholar
  3. 3.
    Deutz S, Bongartz D, Heuser B, Kätelhön A, Langenhorst LS, Omari A, Walters M, Klankermayer J, Leitner W, Mitsos A, Pischinger S, Bardow A (2018) Cleaner production of cleaner fuels wind-to-wheel – environmental assessment of CO2-based oxymethylene ether as a drop-in fuel. Energy Environ Sci 11:331–343CrossRefGoogle Scholar
  4. 4.
    Peter A, Fehr SM, Dybbert V, Himmel D, Lindner I, Jacob E, Ouda M, Schaadt A, White RJ, Scherer H, Krossing I (2018) Towards a sustainable synthesis of oxymethylene dimethyl ether by homogeneous catalysis and up-take of molecular formaldehyde. Angew Chem Int Ed Engl 57:9461–9464CrossRefGoogle Scholar
  5. 5.
    Jensen SH, Sun X, Ebbesen SD, Knibbe R, Mogensen M (2010) Hydrogen and synthetic fuel production using pressurized solid oxide electrolysis cells. Int J Hydrogen Energy 35:9544–9549CrossRefGoogle Scholar
  6. 6.
    Blum L, Meulenberg WA, Nabielek H, Steinberger-Wilckens R (2005) World-wide SOFC technology overview and benchmark. Int J Appl Ceram Technol 2:482–492CrossRefGoogle Scholar
  7. 7.
    Wang Y, Zhao L, Otto A, Robinius M, Stolten D (2017) A review of post-combustion CO2 capture technologies from coal-fired power plants. Energy Procedia 114:650–665CrossRefGoogle Scholar
  8. 8.
    Sanz-Pérez ES, Murdock CR, Didas SA, Jones CW (2016) Direct capture of CO2 from ambient air. Chem Rev 116:11840–11876.  https://doi.org/10.1021/acs.chemrev.6b00173CrossRefGoogle Scholar
  9. 9.
    Keith DW, Holmes G, St. Angelo D, Heidel K (2018) Process for capturing CO2 from the atmosphere. Joule 2:1573–1594.  https://doi.org/10.1016/j.joule.2018.05.006CrossRefGoogle Scholar
  10. 10.
    Tremel A (2017) Green hydrogen and downstream synthesis products – electricity-based fuels for the transportation sector. In: Liebl J, Beidl C (eds) Internationaler Motorenkongress 2017, Proceedings. Springer Vieweg, WiesbadenGoogle Scholar
  11. 11.
    Tremel A (2018) Electricity-based fuels. Springer International Publishing. ISBN 978–3-319-72458-4Google Scholar
  12. 12.
    Kiener C, Fleischer M (2015) Storage of excess power from renewable in chemicals using polygeneration IGCC gasification plants. In: ACHEMA, Frankfurt am Main, Germany, 15–19 June 2015Google Scholar
  13. 13.
    Haas T, Krause R, Weber R, Demler M, Schmid G (2018) Technical photosynthesis involving CO2 electrolysis and fermentation. Nat Catal 1:32–39CrossRefGoogle Scholar
  14. 14.
    Noda H, Ikeda S, Oda Y, Imai K, Maeda M, Ito K (1990) Electrochemical reduction of carbon dioxide at various metal electrodes in aqueous potassium hydrogen carbonate solution. Bull Chem Soc Jpn 63:2459–2462CrossRefGoogle Scholar
  15. 15.
    Azuma M, Hashimoto K, Hiramoto M, Watanabe M, Sakata T (1990) Electro-chemical reduction of carbon dioxide on various metal electrodes in low-temperature aqueous KHCO3 media. J Electrochem Soc 137:1772–1778CrossRefGoogle Scholar
  16. 16.
    Hori Y, Wakebe H, Tsukamoto T, Koga O (1994) Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim Acta 39:1833–1839CrossRefGoogle Scholar
  17. 17.
    Ogura K, Yano H, Shirai F (2003) Catalytic reduction of CO2 to ethylene by electrolysis at a three-phase interface. J Electrochem Soc 150:D163–D168CrossRefGoogle Scholar
  18. 18.
    Hori Y (2008) Electrochemical CO2 reduction on metal electrodes. In: Vayenas C, White R, Gamboa-Aldeco M (eds) Modern aspects of electrochemistry 42:89–189. Springer, New YorkGoogle Scholar
  19. 19.
    Fleischer M, Lehmann M (Hrsg) (2012) Solid state gas sensors: industrial application. Springer, Heidelberg. ISBN 978-3-642-28092-4Google Scholar
  20. 20.
    Ostrick B, Mühlsteff J, Fleischer M, Meixner H, Doll T, Kohl C-D (1999) Adsorbed water is key to room temperature gas-sensitive reactions in work function type gas sensors: the carbonate carbon dioxide system. Sens Actuators B 57:115–119CrossRefGoogle Scholar
  21. 21.
    Fleischer M (2008) Advances in application potential of solid date gas sensors: high-temperature semi conducting oxides and ambient temperature GasFET devices. Meas Sci Technol 19:1–18CrossRefGoogle Scholar
  22. 22.
    Guth U (1975) Water vapor electrolysis by means of solid oxide electrolytes. Dissertation, University of Greifswald, GermanyGoogle Scholar
  23. 23.
    Kuhl KP, Cave ER, Abram DN, Jaramillo TF (2012) Energy Environ Sci 5:7050–7059CrossRefGoogle Scholar
  24. 24.
    Schmid B, Reller C, Neubauer S, Fleischer M, Dorta R, Schmid G (2017) Reactivity of copper electrodes towards functional groups and small molecules in the context of CO2 electro-reductions. Catalysts 7:161.  https://doi.org/10.3390/catal7050161CrossRefGoogle Scholar
  25. 25.
    Liu X, Xiao J, Peng H, Hong X, Chan K, Nørskov JK (2017) Understanding trends in electrochemical carbon dioxide reduction rates. Nat Commun 8:15438.  https://doi.org/10.1038/ncomms15438CrossRefGoogle Scholar
  26. 26.
    De Luna P, Quintero-Bermudez R, Dinh C-T, Ross MB, Bushuyev OS, Todorović P, Regier T, Kelley SO, Yang P, Sargent EH (2018) Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nat Catal 1:103–110CrossRefGoogle Scholar
  27. 27.
    Gattrell M, Gupta N, Co A (2006) A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper. J Electroanal Chem 594:1–19CrossRefGoogle Scholar
  28. 28.
    Oloman C, Li H (2008) Electrochemical processing of carbon dioxide. Chemsuschem 1:385–391CrossRefGoogle Scholar
  29. 29.
    Spinner NS, Vega JA, Mustain WE (2012) Recent progress in the electro-chemical conversion and utilization of CO2. Catal Sci Technol 2:19–28CrossRefGoogle Scholar
  30. 30.
    Jhong H-R, Ma S, Kenis P (2013) Electrochemical conversion of CO2 to useful chemicals: current status, remaining challenges, and future opportunities. Curr Opin Chem Eng 2:191–199CrossRefGoogle Scholar
  31. 31.
    Jones J-P, Prakash GKS, Olah GA (2014) Electrochemical CO2 reduction: recent advances and current trends. Isr J Chem 54:1451–1466CrossRefGoogle Scholar
  32. 32.
    Martin AJ, Larrazabal GO, Perez-Ramirez J (2015) Towards sustainable fuels and chemicals through the electrochemical reduction of CO2: lessons from water electrolysis. Green Chem 17:5114–5130CrossRefGoogle Scholar
  33. 33.
    Endrodi B, Bencsik G, Darvas F, Jones R, Rajeshwar K, Janaky J (2017) Continuous-flow electroreduction of carbondioxide. Prog Energy Combust Sci 62:133–154CrossRefGoogle Scholar
  34. 34.
    Malik K, Singh S, Basu S, Verma A (2017) Electrochemical reduction of CO2 for synthesis of green fuel. WIREs Energy Environ 6:e244.  https://doi.org/10.1002/wene.244CrossRefGoogle Scholar
  35. 35.
    Zhang W, Hu Y, Ma L, Zhu G, Wang Y, Xue X, Chen R, Yang S, Jin Z (2018) Progress and perspective of electrocatalytic CO2 reduction for renewable carbonaceous fuels and chemicals. Adv Sci 5:1700275.  https://doi.org/10.1002/advs.201700275CrossRefGoogle Scholar
  36. 36.
    Thorson MR, Siil KI, Kenis PJA (2013) Effect of cations on the electro-chemical conversion of CO2 to CO. J Electrochem Soc 160:F69–F74CrossRefGoogle Scholar
  37. 37.
    Kortlever R, Shen J, Schouten KJP, Calle-Vallejo F, Koper MTM (2015) Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J Phys Chem Lett 6:4073–4082.  https://doi.org/10.1021/acs.jpclett.5b01559CrossRefGoogle Scholar
  38. 38.
    Liu M, Pang Y, Zhang B, De Luna P, Voznyy O, Xu J, Zheng X, Dinh CT, Fan F, Cao C, de Arquer FPG, Safaei TS, Mepham A, Klinkova A, Kumacheva E, Filleter T, Sinton D, Kelley SO, Sargent EH (2016) Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 537:382–386.  https://doi.org/10.1038/nature19060CrossRefGoogle Scholar
  39. 39.
    Schmid G, Fleischer M (2015) Direct electrochemical conversion of CO2 into valuable products, solar light for energy production and storage: a look into the future. University of Zürich, Switzerland, 26–27 November 2015Google Scholar
  40. 40.
    Jörissen J, Turek T, Weber R (2011) Energy saving in electrolysis: chlorine production with oxygen depolarized cathodes. Chem unserer Zeit 45:172–183CrossRefGoogle Scholar
  41. 41.
    Kintrup J, Millaruelo M, Trieu V, Bulan A, Mojica ES (2017) Gas diffusion electrodes for efficient manufacturing of chlorine and other chemicals. Electrochem Soc Interface Summer 26:73–76.  https://doi.org/10.1149/2.F07172ifCrossRefGoogle Scholar
  42. 42.
    Jeanty P, Scherer C, Magori E, Wiesner-Fleischer K, Hinrichsen O, Fleischer M (2018) Upscaling and continuous operation of electrochemical CO2 to CO conversion in aqueous solutions on silver gas diffusion electrodes, J CO2 Utilization 24:454–462Google Scholar
  43. 43.
    Reller C, Krause R, Neubauer S, Schmid G, Fleischer M (2015) CO2-to-value direct electrocatalytic reduction of CO2 towards chemical feedstock. In: 48. Jahrestreffen Deutscher Katalytiker, Weimar, Germany, 11–13 March 2015Google Scholar
  44. 44.
    Schmid B, Reller C, Krause R, Fleischer M, Dorta R, Schmid G (2016) High Faradaic efficiencies for non gaseous oxygenates in copper catalyzed CO2 electro-reduction at high current densities. In: 49. Jahrestreffen Deutscher Katalytiker, Weimar, Germany, 16–18 March 2016Google Scholar
  45. 45.
    Schmid G, Reller C, Krause RK, Schmid B, Neubauer SS, Rucki A, Wiesner K, Magori E, Jeanty P, Fleischer M (2016) Single step direct electro catalytic reduction of CO2 towards CO and hydrocarbons. In: 229th ECS meeting, San Diego, USA, 29 May–02 June 2016Google Scholar
  46. 46.
    Dinh C-T, Burdyny T, Kibria G, Seifitokaldani A, Gabardo CM, de Arquer FPG, Kiani A, Edwards JP, De Luna P, Bushuyev OS, Zou C, Quintero-Bermudez R, Pang Y, Sinton D, Sargent EH (2018) CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360:783–787CrossRefGoogle Scholar
  47. 47.
    Engelbrecht A, Uhlig C, Stark O, Hämmerle M, Schmid G, Magori E, Wiesner-Fleischer K, Fleischer M, Moos R (2018) On the electrochemical CO2 reduction at copper sheet electrodes with enhanced long-term stability by pulsed electrolysis. J Electrochem Soc 165:J3059–J3068CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  • Maximilian Fleischer
    • 1
    Email author
  • P. Jeanty
    • 1
  • K. Wiesner-Fleischer
    • 1
  • O. Hinrichsen
    • 2
  1. 1.Siemens AG Corporate Technology, Research in Energy and Electronics CT REEMunichGermany
  2. 2.Catalysis Research Center and Chemistry DepartmentTechnical University of MunichMunichGermany

Personalised recommendations