Synthetic Fuels

A Contribution of Chemistry to Sustainable Energy Systems
  • Robert SchlöglEmail author
Part of the ATZ/MTZ-Fachbuch book series (ATZMTZ)


As it becomes more urgent to take action in CO2 reduction following the Paris accord it is essential to draw a plan for how a sustainable energy system may look like. This is not a fixed target but rather a plastic picture with, however a few hard contours in it. These contours describe critical elements interacting in the system sustainable energy.


  1. 1.
    Truffer B, Schippl J, Fleischer T (2017) Decentering technology in technology assessment: prospects for socio-technical transitions in electric mobility in Germany. Technol Forecast Soc Chang 122:34–48CrossRefGoogle Scholar
  2. 2.
    Aresta M (2017) My journey in the CO2-chemistry wonderland. Coord Chem Rev 334:150–183CrossRefGoogle Scholar
  3. 3.
    Centi G, Quadrelli EA, Perathoner S (2013) Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries. Energy Environ Sci 6(6):1711–1731CrossRefGoogle Scholar
  4. 4.
    Pischinger S (2016) Current and future challenges for automotive catalysis: engine technology trends and their impact. Top Catal 59(10–12):834–844CrossRefGoogle Scholar
  5. 5.
    Hoppe F, Heuser B, Thewes M, Kremer F, Pischinger S, Dahmen M, Hechinger M, Marquardt W (2016) Tailor-made fuels for future engine concepts. Int J Engine Res 17(1):16–27CrossRefGoogle Scholar
  6. 6.
    Maus W, Jacob E (2015) Future-safe combustion-engined drives – the role of sustainable fuels. International Engine Congress, Baden, pp 283–284Google Scholar
  7. 7.
    Hartl M, Seidenspinner P, Jacob E, Wachtmeister G (2015) Oxygenate screening on a heavy-duty diesel engine and emission characteristics of highly oxygenated oxymethylene ether fuel OME1. Fuel 153:328–335CrossRefGoogle Scholar
  8. 8.
    Klankermayer J, Wesselbaum S, Beydoun K, Leitner W (2016) Selective catalytic synthesis using the combination of carbon dioxide and hydrogen: catalytic chess at the interface of energy and chemistry. Angewandte Chemie Int Ed 55(26):7296–7343CrossRefGoogle Scholar
  9. 9.
    Aresta M, Dibenedetto A, Angelini A (2013) The changing paradigm in CO2 utilization. J CO2 Utilization 3–5:65–73CrossRefGoogle Scholar
  10. 10.
    Leitner W, Klankermayer J, Pischinger S, Pitsch H, Kohse-Hoinghaus K (2017) Advanced biofuels and beyond: chemistry solutions for propulsion and production. Angewandte Chemie Int Ed 56(20):5412–5452CrossRefGoogle Scholar
  11. 11.
    Poliakoff M, Leitner W, Streng ES (2015) The twelve principles of CO2 chemistry. Faraday Discuss 183:9–17CrossRefGoogle Scholar
  12. 12.
    Klankermayer J, Leitner W (2015) Love at second sight for CO2 and H-2 in organic synthesis. Science 350(6261):629–630CrossRefGoogle Scholar
  13. 13.
    Aresta M, Dibenedetto A, Quaranta E (2016) State of the art and perspectives in catalytic processes for CO2 conversion into chemicals and fuels: the distinctive contribution of chemical catalysis and biotechnology. J Catal 343:2–45CrossRefGoogle Scholar
  14. 14.
    Mac Dowell N, Fennell PS, Shah N, Maitland GC (2017) The role of CO2 capture and utilization in mitigating climate change. Nat Clim Change 7(4):243–249CrossRefGoogle Scholar
  15. 15.
    Cuellar-Franca RM, Azapagic A (2015) Carbon capture, storage and utilisation technologies: a critical analysis and comparison of their life cycle environmental impacts. J CO2 Utilization 9:82–102CrossRefGoogle Scholar
  16. 16.
    Bruhn T, Naims H, Olfe-Krautlein B (2016) Separating the debate on CO2 utilisation from carbon capture and storage. Environ Sci Policy 60:38–43CrossRefGoogle Scholar
  17. 17.
    Aresta M, Dibenedetto A, Angelini A (2014) Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. Technological use of CO2. Chem Rev 114(3):1709–1742CrossRefGoogle Scholar
  18. 18.
    Philibert C (2017) Renewable energy for industry. Int Energy Agency, Paris, S 65Google Scholar
  19. 19.
    Perez-Fortes M, Schoneberger JC, Boulamanti A, Tzimas E (2016) Methanol synthesis using captured CO2 as raw material: techno-economic and environmental assessment. Appl Energy 161:718–732CrossRefGoogle Scholar
  20. 20.
    Haegel NM, Margolis R, Buonassisi T, Feldman D, Froitzheim A, Garabedian R, Green M, Glunz S, Henning HM, Holder B, Kaizuka I, Kroposki B, Matsubara K, Niki S, Sakurai K, Schindler RA, Tumas W, Weber ER, Wilson G, Woodhouse M, Kurtz S (2017) Terawatt-scale photovoltaics: trajectories and challenges. Science 356(6334):141–143CrossRefGoogle Scholar
  21. 21.
    Palzer A, Henning HM (2014) A future German energy system with a dominating contribution from renewable energies: a holistic model based on hourly simulation. Energy Technol 2(1):13–28CrossRefGoogle Scholar
  22. 22.
    Palzer A, Henning HM (2014) A comprehensive model for the German electricity and heat sector in a future energy system with a dominant contribution from renewable energy technologies – Part II: results. Renew Sustain Energy Rev 30:1019–1034CrossRefGoogle Scholar
  23. 23.
    Henning HM, Palzer A (2014) A comprehensive model for the German electricity and heat sector in a future energy system with a dominant contribution from renewable energy technologies—part I: methodology. Renew Sustain Energy Rev 30:1003–1018CrossRefGoogle Scholar
  24. 24.
    Lunz B, Stöcker P, Eckstein S, Nebel A, Samadi S, Erlach B, Fischedick M, Elsner P, Sauer DU (2016) Appl Energy 171(Suppl C):580Google Scholar
  25. 25.
    Archer MD, Bolton JR (1990) Requirements for ideal performance of photochemical and photovoltaic solar-energy converters. J Phys Chem 94(21):8028–8036CrossRefGoogle Scholar
  26. 26.
    Yagi M, Syouji A, Yamada S, Komi M, Yamazaki H, Tajima S (2009) Molecular catalysts for water oxidation toward artificial photosynthesis. Photochem Photobiol Sci 8(2):139–147CrossRefGoogle Scholar
  27. 27.
    Gust D, Moore TA, Moore AL (2009) Solar fuels via artificial photosynthesis. Acc Chem Res 42(12):1890–1898CrossRefGoogle Scholar
  28. 28.
    Barber J (2009) Photosynthetic energy conversion: natural and artificial. Chem Soc Rev 38(1):185–196CrossRefGoogle Scholar
  29. 29.
    Suopajarvi H, Pongracz E, Fabritius T (2013) The potential of using biomass-based reducing agents in the blast furnace: a review of thermochemical conversion technologies and assessments related to sustainability. Renew Sustain Energy Rev 25:511–528CrossRefGoogle Scholar
  30. 30.
    Steinfeld A (2005) Solar thermochemical production of hydrogen – a review. Sol Energy 78(5):603–615CrossRefGoogle Scholar
  31. 31.
    Kim HS, Lee CR, Im JH, Lee KB, Moehl T, Marchioro A, Moon SJ, Humphry-Baker R, Yum JH, Moser JE, Gratzel M, Park NG (2012) Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep 2:591CrossRefGoogle Scholar
  32. 32.
    Oregan B, Gratzel M (1991) A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TIO2 films. Nature 353(6346):737–740CrossRefGoogle Scholar
  33. 33.
    Bukhtiyarova M, Lunkenbein T, Kähler K, Schlögl R (2017) Methanol synthesis from industrial CO2 sources: a contribution to chemical energy conversion. Catal Lett 147(2):416–427CrossRefGoogle Scholar
  34. 34.
    Wang HR, Yan JB, Dong L (2016) Simulation and economic evaluation of biomass gasification with sets for heating, cooling and power production. Renew Energy 99:360–368CrossRefGoogle Scholar
  35. 35.
    Li M, Rao AD, Brouwer J, Samuelsen GS (2010) Design of highly efficient coal-based integrated gasification fuel cell power plants. J Power Sources 195(17):5707–5718CrossRefGoogle Scholar
  36. 36.
    Mahbub N, Oyedun AO, Kumar A, Oestreich D, Arnold U, Sauer J (2017) A life cycle assessment of oxymethylene ether synthesis from biomass-derived syngas as a diesel additive. J Clean Prod 165:1249–1262CrossRefGoogle Scholar
  37. 37.
    Mirkouei A, Haapala KR, Sessions J, Murthy GS (2017) A review and future directions in techno-economic modeling and optimization of upstream forest biomass to bio-oil supply chains. Renew Sustain Energy Rev 67:15–35CrossRefGoogle Scholar
  38. 38.
    Rosillo-Calle F (2016) A review of biomass energy-shortcomings and concerns. J Chem Technol Biotechnol 91(7):1933–1945CrossRefGoogle Scholar
  39. 39.
    Ail SS, Dasappa S (2016) Biomass to liquid transportation fuel via Fischer Tropsch synthesis – technology review and current scenario. Renew Sustain Energy Rev 58:267–286CrossRefGoogle Scholar
  40. 40.
    Reiche S, Kowalew N, Schlögl R (2015) Influence of synthesis pH and oxidative strength of the catalyzing acid on the morphology and chemical structure of hydrothermal carbon. ChemPhysChem 16(3):579–587CrossRefGoogle Scholar
  41. 41.
    Paraknowitsch JP, Thomas A, Antonietti M (2009) Carbon colloids prepared by hydrothermal carbonization as efficient fuel for indirect carbon fuel cells. Chem Mater 21(7):1170–1172CrossRefGoogle Scholar
  42. 42.
    Deutz S, Bongartz D, Heuser B, Katelhon A, Langenhorst LS, Omari A, Walters M, Klankermayer J, Leitner W, Mitsos A, Pischinger S, Bardow A (2018) Cleaner production of cleaner fuels: wind-to-wheel – environmental assessment of CO2-based oxymethylene ether as a drop-in fuel. Energy Environ Sci 11(2):331–343CrossRefGoogle Scholar
  43. 43.
    Schmidt P, Raksha T, Jöhrens J, Lambrecht U, Gerhardt N, Jentsch M (2016) Analyse von Herausforderungen und Synergiepotenzialen beim Zusammenspiel von Verkehrs- und Stromsektor. BMVI EdGoogle Scholar
  44. 44.
    Deutsch D, Oestreich D, Lautenschutz L, Haltenort P, Arnold U, Sauer J (2017) High purity oligomeric oxymethylene ethers as diesel fuels. Chem Ing Tec 89(4):486–489CrossRefGoogle Scholar
  45. 45.
    Oestreich D, Lautenschutz L, Arnold U, Sauer J (2017) Reaction kinetics and equilibrium parameters for the production of oxymethylene dimethyl ethers (OME) from methanol and formaldehyde. Chem Eng Sci 163:92–104CrossRefGoogle Scholar
  46. 46.
    Lautenschutz L, Oestreich D, Haltenort P, Arnold U, Dinjus E, Sauer J (2017) Efficient synthesis of oxymethylene dimethyl ethers (OME) from dimethoxymethane and trioxane over zeolites. Fuel Process Technol 165:27–33CrossRefGoogle Scholar
  47. 47.
    Schmitz N, Burger J, Strofer E, Hasse H (2016) From methanol to the oxygenated diesel fuel poly(oxymethylene) dimethyl ether: an assessment of the production costs. Fuel 185:67–72CrossRefGoogle Scholar
  48. 48.
    Icha P (2013) Climate change. Umweltbundesamt EdGoogle Scholar
  49. 49.
    Rockstrom J, Gaffney O, Rogelj J, Meinshausen M, Nakicenovic N, Schellnhuber HJ (2017) Climate policy a roadmap for rapid decarbonization. Science 355(6331):1269–1271CrossRefGoogle Scholar
  50. 50.
    Xu XY, Liu Y, Zhang F, Di W, Zhang YL (2017) Clean coal technologies in China based on methanol platform. Catal Today 298:61–68CrossRefGoogle Scholar
  51. 51.
    Ishimoto Y, Kurosawa A, Sasakura M, Sakata K (2017) Significance of CO2-free hydrogen globally and for Japan using a long-term global energy system analysis. Int J Hydrogen Energy 42(19):13357–13367CrossRefGoogle Scholar
  52. 52.
    Schüth F, Palkovits R, Schlögl R, Su DS (2012) Ammonia as a possible element in an energy infrastructure: catalysts for ammonia decomposition. Energy Environ Sci 5(4):6278–6289CrossRefGoogle Scholar
  53. 53.
    Dana AG, Elishav O, Bardow A, Shter GE, Grader GS (2016) Nitrogen-based fuels: a power-to-fuel-to-power analysis. Angewandte Chemie Int Ed 55(31):8798–8805CrossRefGoogle Scholar
  54. 54.
    Koytsoumpa EI, Bergins C, Kakaras E (2018) The CO2 economy: review of CO2 capture and reuse technologies. J Supercrit Fluids 132:3–16CrossRefGoogle Scholar
  55. 55.
    Abanades JC, Rubin ES, Mazzotti M, Herzog HJ (2017) On the climate change mitigation potential of CO2 conversion to fuels. Energy Environ Sci 10(12):2491–2499CrossRefGoogle Scholar
  56. 56.
    Barro C, Parravicini M, Boulouchos K, Liati A (2018) Neat polyoxymethylene dimethyl ether in a diesel engine; part 2: exhaust emission analysis. Fuel 234:1414–1421CrossRefGoogle Scholar
  57. 57.
    Baranowski CJ, Bahmanpour AM, Krocher O (2017) Catalytic synthesis of polyoxymethylene dimethyl ethers (OME): a review. Appl Catal B-Environ 217:407–420CrossRefGoogle Scholar
  58. 58.
    Sinigaglia T, Lewiski F, Martins MES, Siluk JCM (2017) Production, storage, fuel stations of hydrogen and its utilization in automotive applications-a review. Int J Hydrogen Energy 42(39):24597–24611CrossRefGoogle Scholar
  59. 59.
    Valente A, Iribarren D, Dufour J (2017) Life cycle assessment of hydrogen energy systems: a review of methodological choices. Int J Life Cycle Assess 22(3):346–363CrossRefGoogle Scholar
  60. 60.
    Nikolaidis P, Poullikkas A (2017) A comparative overview of hydrogen production processes. Renew Sustain Energy Rev 67:597–611CrossRefGoogle Scholar
  61. 61.
    Spanos I, Auer AA, Neugebauer S, Deng XH, Tuysuz H, Schlogl R (2017) Standardized benchmarking of water splitting catalysts in a Combined Electrochemical Flow Cell/Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) setup. ACS Catalysis 7(6):3768–3778CrossRefGoogle Scholar
  62. 62.
    Bloor LG, Molina PI, Symes MD, Cronin L (2014) Low pH electrolytic water splitting using earth-abundant metastable catalysts that self-assemble in situ. J Am Chem Soc 136(8):3304–3311CrossRefGoogle Scholar
  63. 63.
    McKone J, Lewis N (2013) Structured materials for photoelectrochemical water splitting. In: Lewerenz HJ, Peter L (eds) Photoelectrochemical water splitting: materials, processes and architectures, pp 52–82Google Scholar
  64. 64.
    Mette K, Bergmann A, Tessonnier J-P, Hävecker M, Yao L, Ressler T, Schloegl R, Strasser P, Behrens M (2012) Nanostructured manganese oxide supported on carbon nanotubes for electrocatalytic water splitting. Chemcatchem 4(6):851–862CrossRefGoogle Scholar
  65. 65.
    Maeda K, Takata T, Hara M, Saito N, Inoue Y, Kobayashi H, Domen K (2005) GaN: ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting. J Am Chem Soc 127(23):8286–8287CrossRefGoogle Scholar
  66. 66.
    Liu HR, Xu SY, Zhou GL, Huang GC, Huang SY, Xiong K (2018) CO2 hydrogenation to methane over Co/KIT-6 catalyst: effect of reduction temperature. Chem Eng J 351:65–73CrossRefGoogle Scholar
  67. 67.
    Leonzio G (2018) State of art and perspectives about the production of methanol, dimethyl ether and syngas by carbon dioxide hydrogenation. J CO2 Utilization 27:326–354CrossRefGoogle Scholar
  68. 68.
    Hoppe F, Burke U, Thewes M, Heufer A, Kremer F, Pischinger S (2016) Tailor-made fuels from biomass: potentials of 2-butanone and 2-methylfuran in direct injection spark ignition engines. Fuel 167:106–117CrossRefGoogle Scholar
  69. 69.
    Kerschgens B, Cai LM, Pitsch H, Janssen A, Jakob M, Pischinger S (2015) Surrogate fuels for the simulation of diesel engine combustion of novel biofuels. Int J Engine Res 16(4):531–546CrossRefGoogle Scholar
  70. 70.
    Niemantsverdriet H, van Helden P, Hensen E, Lennon D, Holt K, Hutchings G, Bowker M, Catlow R, Shozi M, Jewell L, Claeys M, Hayward J, Coville N, Fischer N, Roldan A, Redekop E, Gambu T, Deeplal L, Mkhwanazi TPO, Weststrate KJ, Bahnemann D, Neurock M, Schulz H, Ma D, Kondrat S, Collier P, Gupta AK, Corma A, Akomeah P, Iglesia E, van Steen E, de Leeuw N, Wolf M, van Heerden T (2017) Catalysis for fuels: general discussion. Faraday Discuss 197:165–205CrossRefGoogle Scholar
  71. 71.
    Li H-J, Lausche AC, Peterson AA, Hansen HA, Studt F, Bligaard T (2015) Using microkinetic analysis to search for novel anhydrous formaldehyde production catalysts. Surf Sci 641:105–111CrossRefGoogle Scholar
  72. 72.
    Häggblad R, Wagner JB, Hansen S, Andersson A (2008) Oxidation of methanol to formaldehyde over a series of Fe1-xAlx-V-oxide catalysts. J Catal 258(2):345–355CrossRefGoogle Scholar
  73. 73.
    Nagy A, Mestl G, Rühle T, Weinberg G, Schlögl R (1998) The dynamic behaviour of electrolytic silver during the formaldehyde synthesis reaction. J Catal 179(2):548–559CrossRefGoogle Scholar
  74. 74.
    Sarathy SM, Osswald P, Hansen N, Kohse-Hoinghaus K (2014) Alcohol combustion chemistry. Prog Energy Combust Sci 44:40–102CrossRefGoogle Scholar
  75. 75.
    Omari A, Heuser B, Pischinger S (2017) Potential of oxymethylenether-diesel blends for ultra-low emission engines. Fuel 209:232–237CrossRefGoogle Scholar
  76. 76.
    Peter A, Fehr SM, Dybbert V, Himmel D, Lindner I, Jacob E, Ouda M, Schaadt A, White RJ, Scherer H, Krossing I (2018) Towards a sustainable synthesis of oxymethylene dimethyl ether by homogeneous catalysis and uptake of molecular formaldehyde. Angewandte Chemie Int Ed 57(30):9461–9464CrossRefGoogle Scholar
  77. 77.
    Haltenort P, Hackbarth K, Oestreich D, Lautenschutz L, Arnold U, Sauer J (2018) Heterogeneously catalyzed synthesis of oxymethylene dimethyl ethers (OME) from dimethyl ether and trioxane. Catal Commun 109:80–84CrossRefGoogle Scholar
  78. 78.
    Grunert A, Losch P, Ochoa-Hernandez C, Schmidt W, Schuth F (2018) Gas-phase synthesis of oxymethylene ethers over Si-rich zeolites. Green Chem 20(20):4719–4728CrossRefGoogle Scholar
  79. 79.
    Breitkreuz CF, Schmitz N, Strofer E, Burger J, Hasse H (2018) Design of a production process for poly(oxymethylene) dimethyl ethers from dimethyl ether and trioxane. Chem Ing Tec 90(10):1489–1496CrossRefGoogle Scholar
  80. 80.
    Schittkowski J, Ruland H, Laudenschleger D, Girod K, Kähler K, Kaluza S, Muhler M, Schlögl R (2018) Methanol synthesis from steel mill exhaust gases: challenges for the industrial Cu/ZnO/Al2O3 catalyst. Chem Ing Tec 90(10):1419–1429CrossRefGoogle Scholar
  81. 81.
    Zurbel A, Kraft M, Kavurucu-Schubert S, Bertau M (2018) Methanol synthesis by CO2 Hydrogenation over Cu/ZnO/Al2O3 catalysts under fluctuating conditions. Chem Ing Tec 90(5):721–724CrossRefGoogle Scholar
  82. 82.
    Zhao Y, Noori M, Tatari O (2017) Boosting the adoption and the reliability of renewable energy sources: mitigating the large-scale wind power intermittency through vehicle to grid technology. Energy 120:608–618CrossRefGoogle Scholar
  83. 83.
    Modi A, Buhler F, Andreasen JG, Haglind F (2017) A review of solar energy based heat and power generation systems. Renew Sustain Energy Rev 67:1047–1064CrossRefGoogle Scholar
  84. 84.
    Koytsoumpa EI, Bergins C, Buddenberg T, Wu S, Sigurbjornsson O, Tran KC, Kakaras E (2016) The challenge of energy storage in Europe: focus on power to fuel. J Energy Resour Technol Trans ASME 138(4):042002CrossRefGoogle Scholar
  85. 85.
    Khan N, Saleem Z, Wahid A (2008) Review of natural energy sources and global power needs. Renew Sustain Energy Rev 12(7):1959–1973CrossRefGoogle Scholar
  86. 86.
    Perathoner S, Gross S, Hensen EJM, Wessel H, Chraye H, Centi G (2017) Looking at the future of chemical production through the European Roadmap on science and technology of catalysis the EU effort for a long-term vision. Chemcatchem 9(6):904–909CrossRefGoogle Scholar
  87. 87.
    Navarrete A, Centi G, Bogaerts A, Martin A, York A, Stefanidis GD (2017) Harvesting renewable energy for carbon dioxide catalysis. Energy Technol 5(6):796–811CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Fritz-Haber-Institut der Max-Planck-GesellschaftBerlinGermany
  2. 2.Max Planck Institute for Chemical Energy ConversionMülheim/RuhrGermany

Personalised recommendations