Advertisement

Introduction

  • Guy Guelachvili
  • Nathalie Picqué
Chapter
Part of the Molecules and Radicals book series (volume 20C2)

Abstract

This chapter provides the detailed study of the symbols, units and notations of the molecular parameters of ozone molecule O3 and its isotopomers. Various theoretical models used to determine these parameters at various rotational and vibrational states of these molecules are described.

References

  1. [43Kin]
    King, G.W., Hainer, R.M., and Cross, P.C.: The asymmetric rotor. I. Calculation and symmetry classification of energy levels. J. Chem. Phys 11 (1943) 27–42.ADSCrossRefGoogle Scholar
  2. [45Her]
    Herzberg, G.: Infrared and Raman spectra of polyatomic molecules. New York: Van Nostrand, 1945.Google Scholar
  3. [65Kuc]
    Kuchitsu, K., Morino, Y.: Estimation of anharmonic potential constants. II. Bent XY2 molecules. Bull. Chem. Soc. Jpn. 38 (1965) 814–824.CrossRefGoogle Scholar
  4. [67Wat]
    Watson, J.K.G.: Determination of centrifugal distortion coefficients of asymmetric-top molecules. J. Chem. Phys. 46 (1967) 1935–1949.ADSCrossRefGoogle Scholar
  5. [68Wat2]
    Watson, J.K.G.: Determination of centrifugal distortion coefficients of asymmetric-top molecules. III. Sextic coefficients. J. Chem. Phys. 48 (1968) 4517–4524.ADSCrossRefGoogle Scholar
  6. [68Wat3]
    Watson, J.K.G.: Simplification of the molecular vibration-rotation Hamiltonian. Mol. Phys. 15 (1968) 479–490.ADSCrossRefGoogle Scholar
  7. [75Cam]
    Camy-Peyret, C., and Flaud, J.M., Etude vibrorotationnelle de la molécule d’eau. Université Pierre et Marie Curie, (1975), pp. 1–325, n° CNRS A.O. 11443.Google Scholar
  8. [76Ali]
    Aliev, M.R., and Watson, J.K.G.: Calculated sextic centrifugal distortion constants of polyatomic molecules. J. Mol. Spectrosc. 61 (1976) 29–52.ADSCrossRefGoogle Scholar
  9. [77Wat1]
    Watson, J.K.G.: Aspects of quartic and sextic centrifugal effects on rotational energy levels, in: Vibrational Spectra and Structure: A Series of Advances, Vol. 6, Durig, J.R. (ed., Amsterdam: Elsevier, 1977, p. 1–89.Google Scholar
  10. [77Wat2]
    Watson, J.K.G.: A planarity relation for sextic centrifugal distortion constants. J. Mol. Spectrosc. 65 (1977) 123–133.ADSCrossRefGoogle Scholar
  11. [80Tyu]
    Tyuterev, V.G., and Perevalov, V.I.: Generalized contact transformations of a hamiltonian with a quasi-degenerate zero-order approximation. Application to accidental vibration- rotation resonances in molecules. Chem. Phys. Lett. 74 (1980) 494–502.ADSCrossRefGoogle Scholar
  12. [82Per1]
    Perevalov, V.I., and Tyuterev, V.G.: Effective Hamiltonian with empirically determinable parameters in case of Coriolis resonances. Opt. Spectrosk. 52 (1982) 644–650.Google Scholar
  13. [82Per3]
    Perevalov, B.V., and Tyuterev, V.: A model for unambiguous determination of spectroscopic parameters in the case of simultaneous processing of interacting vibrational states. Anharmonic resonance in asymmetric top molecules. Russian Phys. J. 2 (1982) 179–182.Google Scholar
  14. [82Per4]
    Perevalov, V.I., and Tyuterev, V.G.: Model with uniquely deducible parameters for the combined analysis of two resonating vibrational states. Anharmonic resonances in molecules of asymmetric-gyroscope type. Soviet Physics Journal 25 (1982) 179–182.ADSCrossRefGoogle Scholar
  15. [83Jen]
    Jensen, P.: The nonrigid bender Hamiltonian for calculating the rotation-vibration energy levels of a triatomic molecule. Comp. Phys. Rep. 1 (1983) 1–55.CrossRefGoogle Scholar
  16. [85Cam]
    Camy-Peyret, C., Flaud, J.-M.: Vibration-rotation dipole moment operator for asymmetric rotors, in: Molecular Spectroscopy: Modern Research, Vol. III, Rao, K.N. (ed.), New York and London: Academic Press Inc., 1985 p. 69–110.Google Scholar
  17. [87Fla2]
    Flaud, J.M., Camy-Peyret, C., Devi, V.M., Rinsland, C.P., and Smith, M.A.H.: The ν1 and ν3 bands of 16O3: Line positions and intensities. J. Mol. Spectrosc. 124 (1987) 209–217.ADSCrossRefGoogle Scholar
  18. [88Jen1]
    Jensen, P.: A new Morse Oscillator-Rigid Bender Internal Dynamics (MORBID) Hamiltonian for triatomic molecules. J. Mol. Spectrosc. 128 (1988) 478–501.ADSCrossRefGoogle Scholar
  19. [88Rin]
    Rinsland, C.P., Smith, M.A.H., Flaud, J.M., Camy-Peyret, C., and Devi, V.M.: Line positions and intensities of the 2ν3, ν1 + ν3, and 2ν1 bands of 16O3. J. Mol. Spectrosc. 130 (1988) 204–212.ADSCrossRefGoogle Scholar
  20. [90Fla2]
    Flaud, J.-M., Camy-Peyret, C., Rinsland, C.P., Devi, V.M., Smith, M.A.H., and Goldman, A.: Improved line parameters for ozone bands in the 10-μm spectral region. Appl. Opt. 29 (1990) 3667–3671.ADSCrossRefGoogle Scholar
  21. [93Ban2]
    Banichevich, A., Peyerimhoff, S.D., and Grein, F.: Potential energy surfaces of ozone in its ground state and in the lowest-lying eight excited states. Chem. Phys. 178 (1993) 155–188.CrossRefGoogle Scholar
  22. [93Fla]
    Flaud, J.M., Camy-Peyret, C., Perrin, A., Devi, V.M., Barbe, A., Bouazza, S., Plateaux, J.J., Rinsland, C.P., Smith, M.A.H., and Goldman, A.: Line Parameters for Ozone Hot Bands in the 3.3-μm Spectral Region. J. Mol. Spectrosc. 160 (1993) 378–386.ADSCrossRefGoogle Scholar
  23. [95Bou3]
    Bouazza, S., Mikhailenko, S., Barbe, A., Regalia, L., Tyuterev, V.G., and Plateaux, J.J.: The ν1 + ν2 + 2ν3 and ν2 + 3ν3 Bands of 16O3. J. Mol. Spectrosc. 174 (1995) 510–519.ADSCrossRefGoogle Scholar
  24. [96Fla]
    Flaud, J.M., Barbe, A., Camy-Peyret, C., and Plateaux, J.J.: High Resolution Analysis of the 5ν3, 3ν1 + ν2 + ν3, and ν1 + 4ν3 Bands of 16O3: Line Positions and Intensities. J. Mol. Spectrosc. 177 (1996) 34–39.ADSCrossRefGoogle Scholar
  25. [97Dev]
    Devi, V.M., Benner, D.C., Smith, M.A.H., and Rinsland, C.P.: Air-Broadening and Shift Coefficients of O3 Lines in the ν2 Band and Their Temperature Dependence. J. Mol. Spectrosc. 182 (1997) 221–238.ADSCrossRefGoogle Scholar
  26. [98Bar2]
    Barbe, A., and Chichery, A.: The 2ν1+ ν2 + 3ν3 Band of 16O3: Line Positions and Intensities. J. Mol. Spectrosc. 192 (1998) 102–110.ADSCrossRefGoogle Scholar
  27. [98Fla]
    Flaud, J.M., and Bacis, R.: The ozone molecule: infrared and microwave spectroscopy. Spectrochim. Acta A 54 (1998) 3–16.ADSCrossRefGoogle Scholar
  28. [99Mik2]
    Mikhailenko, S., Barbe, A., Plateaux, J.J., and Tyuterev, V.G.: New Analysis of 2ν1 + ν2, ν1 + ν2 + ν3, and ν2 + 2ν3 Bands of Ozone in the 2600–2900 cm−1 Region. J. Mol. Spectrosc. 196 (1999) 93–101.ADSCrossRefGoogle Scholar
  29. [99Tyu]
    Tyuterev, V.G., Tashkun, S., Jensen, P., Barbe, A., and Cours, T.: Determination of the Effective Ground State Potential Energy Function of Ozone from High-Resolution Infrared Spectra. J. Mol. Spectrosc. 198 (1999) 57–76.ADSCrossRefGoogle Scholar
  30. [2000Jen]
    Jensen, P.: An introduction to the theory of local mode vibrations. Mol. Phys. 98 (2000) 1253–1285.ADSCrossRefGoogle Scholar
  31. [2000Sch]
    Schwenke, D. W., Partridge, H.: Convergence testing of the analytic representation of an ab initio dipole moment function for water: Improved fitting yields improved intensities. J. Chem. Phys. 113 (2000) 6592–6597.Google Scholar
  32. [2000Tyu]
    Tyuterev, V.G., Tashkun, S.A., Schwenke, D.W., Jensen, P., Cours, T., Barbe, A., and Jacon, M.: Variational EKE-calculations of rovibrational energies of the ozone molecule from an empirical potential function. Chem. Phys. Lett. 316 (2000) 271–279.ADSCrossRefGoogle Scholar
  33. [2001Cla]
    Claveau, C., Camy-Peyret, C., Valentin, A., and Flaud, J.M.: Absolute Intensities of the ν1 and ν3 Bands of 16O3. J. Mol. Spectrosc. 206 (2001) 115–125.ADSCrossRefGoogle Scholar
  34. [2002Bar1]
    Barbe, A., Chichery, A., Cours, T., Tyuterev, V.G., and Plateaux, J.J.: Update of the anharmonic force field parameters of the ozone molecule. J. Mol. Struct. 616 (2002) 55–65.ADSCrossRefGoogle Scholar
  35. [2002Mik1]
    Mikhailenko, S., Barbe, A., and Tyuterev, V.G.: Extended Analysis of Line Positions and Intensities of Ozone Bands in the 2900–3400 cm−1 Region. J. Mol. Spectrosc. 215 (2002) 29–41.ADSCrossRefGoogle Scholar
  36. [2002Wag]
    Wagner, G., Birk, M., Schreier, F., and Flaud, J.M.: Spectroscopic database for ozone in the fundamental spectral regions. J. Geophys. Res. 107 (2002) 4626–4644.CrossRefGoogle Scholar
  37. [2004Tyu1]
    Tyuterev, V., Tashkun, S., and Seghir, H.: High-order contact transformations: general algorithm, computer implementation, and triatomic tests. SPIE Proc. Ser. 5311 (2004) 164–175.ADSCrossRefGoogle Scholar
  38. [2004Tyu2]
    Tyuterev, V., Tashkun, S., Schwenke, D., and Barbe, A.: Variational calculations of high-J rovibrational states of the ozone molecule from empirical determined invariant potential energy surface. SPIE Proc. Ser. 5311 (2004) 176–184.ADSCrossRefGoogle Scholar
  39. [2005Ell]
    Elliott, R., Compton, R., Levis, R., and Matsika, S.: Excited Electronic States of the Cyclic Isomers of O3 and SO2. J. Phys. Chem. A 109 (2005) 11304–11311.CrossRefGoogle Scholar
  40. [2007Bar1]
    Barbe, A., De Backer-Barilly, M.R., Tyuterev, V.G., Campargue, A., Romanini, D., and Kassi, S.: CW-Cavity Ring Down Spectroscopy of the ozone molecule in the 5980–6220 cm−1 region. J. Mol. Spectrosc. 242 (2007) 156–175.ADSCrossRefGoogle Scholar
  41. [2008Cam]
    Campargue, A., Barbe, A., De Backer-Barilly, M.R., Tyuterev, V.G., and Kassi, S.: The near infrared spectrum of ozone by CW-cavity ring down spectroscopy between 5850 and 7000 cm−1: new observations and exhaustive review. Phys. Chem. Chem. Phys. 10 (2008) 2925–2946.CrossRefGoogle Scholar
  42. [2008Har]
    Hartmann, J.M., Boulet, C., Robert, D.: Collisional Effects on Molecular Spectra. Laboratory experiments and models, consequences for applications, Amsterdam: Elsevier, 2008.Google Scholar
  43. [2012Bar]
    Barbe, A., De Backer, M.R., Starikova, E., Tashkun, S.A., Thomas, X., and Tyuterev, V.G.: FTS high resolution spectra of 16O3 in 3500 and 5500 cm−1 regions. First example of new theoretical modelling for a polyad of strongly coupled states. J. Quant. Spectrosc. Radiat. Transfer. 113 (2012) 829–839.ADSCrossRefGoogle Scholar
  44. [2012Tyu]
    Tyuterev, V.G., Kochanov, R.V., Tashkun, S.A.: Analytical representation for the ozone electronic ground state potential function in the spectroscopically accessible range and extended vibration predictions in Proceedings of XVII international symposium HighRus- 2012 high resolution molecular spectroscopy. Publishing House of IAO SB RAS 2012; 2012. pp. 29–50. ISBN: 978-5-94458-133-4, http:// symp.iao.ru/ru/hrms/17/proceedings
  45. [2013Mon]
    Mondelain, D., Campargue, A., Kassi, S., Barbe, A., Starikova, E., De Backer, M.R., and Tyuterev, V.G.: The CW-CRDS spectra of the 16O/18O isotopologues of ozone between 5930 and 6340 cm−1—Part 1: 16O16O18O. J. Quant. Spectrosc. Radiat. Transfer. 116 (2013) 49–66.ADSCrossRefGoogle Scholar
  46. [2013Tyu]
    Tyuterev, V.G., Kochanov, R.V., Tashkun, S.A., Holka, F., and Szalay, P.G.: New analytical model for the ozone electronic ground state potential surface and accurate ab initio vibrational predictions at high energy range. J. Chem. Phys. 139 (2013) 134307.ADSCrossRefGoogle Scholar
  47. [2017Rei]
    Spectroscopy and Dynamics of Ozone and Related Atmospheric Species. Colloquium-2017. Third International Workshop, Reims, France. October 4–6, (2017) http://www.univ-reims.fr/ozone2017
  48. [2017Tyu]
    Tyuterev, V.G., Kochanov, R.V., and Tashkun, S.A.: Accurate ab initio dipole moment surfaces of ozone: First principle intensity predictions for rotationally resolved spectra in a large range of overtone and combination bands. J. Chem. Phys. 146 (2017) 064304.ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Guy Guelachvili
    • 1
  • Nathalie Picqué
    • 2
  1. 1.Institut des Sciences Moléculaires d’Orsay (ISMO)CNRS, Univ. Paris-Sud, Univ. Paris-SaclayOrsayFrance
  2. 2.Institut des Sciences Moléculaires d’Orsay (ISMO)CNRS, Univ. Paris-Sud, Univ. Paris-SaclayOrsayFrance

Personalised recommendations