Advertisement

Development and Application of Metrics for Evaluation of Cumulative Energy Efficiency for IT Devices in Data Centers

  • Fernando PeñaherreraEmail author
  • Katharina Szczepaniak
Conference paper
  • 307 Downloads

Abstract

This paper develops and evaluates a set of metrics to evaluate the holistic energy efficiency of data centers. The Cumulative Energy Efficiency (CEE) and Cumulated Performance Efficiency (CPE) are metrics developed considering criteria for indicators for the evaluation of resource efficiency, while also taking into account aspects of sustainability and primary resource depletion. The metrics are calculated using Cumulative Energy Demand as resource indicator, which is analyzed through a Life Cycle Assessment of products. The useful energy and performance is then compared to this resource depletion indicator. The metrics are then tested with a case study of a server used in a data center. The results indicate a CEE=0,260 and a CPE=789 ops/J. When comparing these values to other well established metrics, the developed metrics account for embodied energy and energy transformation losses for the whole energy supply chain.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This research was done as part of the TEMPRO Project, financed by the German Federal Ministry for Economic Affairs and Energy (BMWi), funding number 03ET1418A.

References

  1. [1] Reddy V, Setz B, Subrahmanya G, Gangadharan, G, Aiello, M. Metrics for Sustainable Data Centers. IEEE Transactions on Sustainable Computing. 2017; Vol. 2, N° 3:290–303.Google Scholar
  2. [2] Schlitt D. Entwicklung einer auslastungsabhängigen Energieffizienzmetrik für Rechenzentren: Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften. Oldenburg: Oldenburg University; 2016.Google Scholar
  3. [3] Hintemann R. Energy consumption of data centers continues to increase: 2015 update. Berlin, Germany; 2015. Available from: https://www.borderstep.de/wp-content/uploads/2015/01/Borderstep_Energy_Consumption_2015_Data_Centers_16_12_2015.pdf (accessed: 29/06/2018].
  4. [4] Koomey J. Worldwide Electricity Used in Data Centers. Environmental Research Letters. 2008; Vol. 3, N° 3:1–8. Available from: http://iopscience.iop.org/article/10.1088/1748-9326/3/3/034008/pdf [accessed: 29/06/2018].
  5. [5] Janacek S. Identifikation von Freiheitsgraden und Wechselwirkungen in Rechenzentren unter Betrachtung elektrischer und thermischer Energie: Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften. Oldenburg: Oldenburg University; 2017.Google Scholar
  6. [6] Dimension Data. The Relationship Between Data Centre Strategy and Energy Efficiency: White Paper. London, UK; 2014. Available from: https://www.dimensiondata.com/zh-CN/Pages/Profile%20Boxes/The-relationship-between-data-cantre-strategyand-energy-efficient-data-centres.aspx [accessed: 13/06/2018].
  7. [7] Jamalzadeh M, Behravan N. An Exhaustive Framework for Better Data Centers’ Energy Efficiency and Greenness by Using Metrics. Indian Journal of Computer Science and Engineering. 2012; Vol. 2, N° 6:813–822.Google Scholar
  8. [8] Hintemann R. Trotz verbesserter Energieeffizienz steigt der Energiebedarf der deutschen Rechenzentren im Jahr 2016. Berlin, Germany; 2017. Available from: https://www.borderstep.de/wp-content/uploads/2017/03/Borderstep_Rechenzentren_2016.pdf [accessed: 13/06/2018].
  9. [9] Borderstep. Aktuell genutzte Kennzahlen und Indikatoren zur Energieeffizienz in Rechenzentren: Arbeitspapier zu AP 3 „Informations- und Bewertungsmodelle für die Energieeffizienz in Rechenzentren“ im Projekt TEMPRO. Berlin, Germany; 2017.Google Scholar
  10. [10] Prakash S, Baron Y, Ran L, Proske M, Schlösser A. Study on the Practical Application of the New Framework Methodology for Measuring the Environmental Impact of ICT: Cost/benefit analysis – SMART 2012/0064. Brussels: European Commission; 2014.Google Scholar
  11. [11] Cisco. Cisco Global Cloud Index: Forecast and Methodology 2012-2017. San Jose, CA, USA; 2013. Available from: https://www.slideshare.net/CiscoSP360/cisco-global-cloud-index-forecast-and-methodology-20122017 [accessed: 26/06/2018].
  12. [12] Hintemann R, Fichter K. Server und Rechenzentren in Deutschland im Jahr 2012. Berlin, Germany; 2013 Available from: http://www.borderstep.de/pdf/Kurzbericht_Rechenzentren_in_Deutschland_2012__09_04_2013.pdf [accessed: 13/06/2018].
  13. [13] Hintemann R. Consolidation, Colocation, Virtualization, and Cloud Computing: The Impact of the Changing Structure of Data Centers on Total Electricity Demand. In: Hilty, L, Aebischer, B: ICT Innovations for Sustainability; 2015; p. 125–136.Google Scholar
  14. [14] Borderstep. Rechenzentren in Deutschland: Eine Studie zur Darstellung der wirtschaftlichen Bedeutung und der Wettbewerbssituation. Berlin, Germany; 2014. Available from: https://www.bitkom.org/noindex/Publikationen/2014/Studien/Studie-zu-Rechenzentren-in-Deutschland-WirtschaftlicheBedeutung-und-Wettbewerbssituation/Borderstep-Institut-Studie-Rechenzentren-in-Deutschland-05-05-20141.pdf [accessed: 29/06/2018].
  15. [15] Whitehead B, Andrews D, Shah A. The Life Cycle Assessment of a UK Data Centre. The International Journal of Life Cycle Assessment. 2015; Vol. 20, N° 3:332–349.Google Scholar
  16. [16] Brill K. Data Center Energy Efficiency and Productivity: White paper. Santa Fe, NM, USA; 2007. Available from: http://large.stanford.edu/courses/2017/ph240/yu2/docs/brill.pdf [accessed: 13/06/2018].
  17. [17] Umweltbundesamt. Materialbestand der Rechenzentren in Deutschland - Eine Bestandsaufnahme zur Ermittlung von Ressourcen- und Energieeinsatz. Berlin, Germany: Umweltbundesamt; 2010.Google Scholar
  18. [18] Umweltbundesamt. Kennzahlen und Indikatoren für die Beurteilung der Ressourceneffizienz von Rechenzentren und Prüfung der praktischen Anwendbarkeit. Berlin, Germany; 2018.Google Scholar
  19. [19] Campos L, Melo H, Verdinelli M, Cauchick M. Environmental Performance Indicators: A study on ISO 14001 certified companies. Journal of Cleaner Production. 2015; Vol. 99:286–296.Google Scholar
  20. [20] Boog E, Bizzo W. Utilização de Indicadores Ambientais como Instrumento para Gestão de Desempenho Ambiental em Empresas Certificadas com a ISO 14001. In: SIMPEP: X Simpósio de Engenharia da Produção. Bauru, SP, Brazil; 2003.Google Scholar
  21. [21] The Green Grid. Green Grid Metrics: Describing Data Center Efficiency: Technical Committee White Paper. Beaverton, OR, USA; 2007. Available from: https://leonardo-energy.pl/wp-content/uploads/2018/03/Green_Grid_Metrics.pdf [accessed: 29/06/2018].
  22. [22] Anderson D, Cader T, Darby T. A Framework for Data Center Energy Productivity: White Paper#13. Beaverton, OR, USA; 2008. Available from: https://www.greenbiz.com/sites/default/files/document/GreenGrid-Framework-Data-Center-Energy-Productivity.pdf [accessed: 29/06/2018].
  23. [23] Behrendt F, Schafer M, Belusa T. Konzeptstudie zur Energie- und Ressourcenezienz im Betrieb von Rechenzentren: Studie zur Erfassung und Bewertung von innovativen Konzepten im Bereich der Anlagen-, Gebäude- und Systemtechnik bei Rechenzentren. Berlin, Germany; 2008.Google Scholar
  24. [24] Spec. SPEC Power and Performance Methodology - SPECpower ssj2008: Standard Performance Evaluation. Gainesville, VA, USA; 2007. Available from: https://www.spec.org/power_ssj2008/docs/SPECpower-Methodology.pdf [accessed: 29/06/2018].
  25. [25] Anderson D, Cader T, Darby T. A Framework for Data Center energy Productivity: White Paper#13. Beaverton, OR, USA; 2008. Available from: https://www.greenbiz.com/sites/default/files/document/GreenGrid-Framework-Data-Center-Energy-Productivity.pdf [accessed: 13/06/2018].
  26. [26] Stanley R, Brill K., Koomey J. Four Metrics Define Data Center “Greenness”: Enabling users to quantify energy consumption initiatives for environmental sustainability and “bottom line” profitability - White Paper. Santa Fe, NM, USA; 2007.Google Scholar
  27. [27] Kütz M. Kennzahlen in der IT. Heidelberg, Germany: dpunkt.verlag; 2011.Google Scholar
  28. [28] Wilkens M, Drenkelfort G, Dittmar L. Bewertung von Kennzahlen und Kennzahlensystemen zur Beschreibung der Energieeffizienz von Rechenzentren. Berlin, Germany; 2013. Available from: https://depositonce.tuberlin.de/bitstream/11303/3544/1/Dokument_13.pdf [accessed: 13/06/2018].
  29. [29] UK Department for Environment, Food and Rural Affairs. Environmental Key Performance Indicators: Reporting guidelines for UK business. London, UK; 2006. Available from: www.defra.gov.uk [accessed: 29/06/2018].
  30. [30] Perotto E, Canziani R, Marchesi R, Butelli, P. Environmental performance, indicators, and measurement uncertainty in EMS context: A case study. Journal of Cleaner Production. 2008; Vol. 16, N° 4:517–530.Google Scholar
  31. [31] Dias-Sardinha I., Reijnders L. Environmental Performance Evaluation and Sustainability Performance Evaluation of Organizations: An Evolutionary Framework: Corporate Social Responsibility and Environmental Management. Corporate Social Responsibility and Environmental Management. 2001; Vol. 8, N° 2:71–79. Available from: https://onlinelibrary.wiley.com/doi/pdf/10.1002/ema.152 [accessed: 29/06/2018].
  32. [32] Umweltbundesamt. Indikatoren/ Kennzahlen für den Rohstoffverbrauch im Rahmen der Nachhaltigkeitsdiskussion. Dessau-Roßlau, Germany; 2012.Google Scholar
  33. [33] Whitehead B, Andrews D, Shah A, Maidment, G. Assessing the Environmental Impact of Data Centres part 1: Background, energy use and metrics. Building and Environment. 2014; Vol.82:151–159.Google Scholar
  34. [34] Haas J, Monroe M, Pflueger J. Proxy proposals for measuring data center productivity: White Paper#18. Beaverton, OR, USA; 2009. Available from: https://www.scribd.com/document/60185825/White-Paper-18-Proxies-Proposals-for-Measuring-Data-Center-Efficiency [accessed: 13/06/2018].
  35. [35] Green IT Promotion Council. New Data Center Energy Efficiency Evaluation Index DPPE (Datacenter Performance per Energy) Measurement Guidelines. Tokyo, Japan; 2012. Available from: http://www.greenIT-pc.jp [accessed: 13/06/2018].
  36. [36] BITKOM. Prozesse und KPI für Rechenzentren: Leitfaden Version 1.0. Berlin, Germany. Available from: https://www.bitkom.org/Bitkom/Publikationen/Prozesse-und-KPI-fuer-Rechenzentren.html [accessed: 29/06/2018].
  37. [37] Belady C, Patterson M. Green Grid Productivity Indicator: White Paper #15. Beaverton, OR, USA; 2008. Available from: https://www.thegreengrid.org/en/resources/library-and-tools/395-WP [accessed: 29/06/2018].
  38. [38] Patterson M, Tschudi B, Vangeet O. ERE: A Metric for Measuring the Benefit of Reuse Energy from a Data Center: White Paper #29. Beaverton, OR, USA. Available from: https://eehpcwg.llnl.gov/documents/infra/06_energyreuseefficiencymetric.pdf [accessed: 13/06/2018].
  39. [39] Green IT Promotion Council. DPPE: Holistic Framework for Data Center Energy Efficiency. Tokyo, Japan: [publisher unknown]; 2012.Google Scholar
  40. [40] Aravanis A. Metrics for Assessing Flexibility and Sustainability of Next Generation Data Centers. In: 2015 IEEE Globecom Workshops; p. 1–6.Google Scholar
  41. [41] Brown E. Electronics Disposal Efficiency: An IT Recycling Metric for Enterprises and Data Centers: White Paper #53. Beaverton, OR, USA; 2012. Available from: https://www.thegreengrid.org/en/resources/library-and-tools/235-Electronics-Disposal-Efficiency-%28EDE%29%3A-An-IT-Recycling-Metric-for-Enterprises-and-Data-Centers- [accessed: 13/06/2018].
  42. [42] Patterson M, Azevedo D, Belady C. Water Usage Effectiveness (WUE) - A Green Grid Data Center Sustainability Metric. White Paper #29, The Green Grid, Beaverton, O, USA. Beaverton, OR, USA; 2011 [accessed: 13/06/2018]. Available from: http://www.thegreengrid.org/~/media/WhitePapers/WUE_v1.pdf.
  43. [43] Cook A. Technology Carbon Efficiency (TCE): A Meter for Measuring Data Center Green Energy Impact - White Paper. New York, NY, USA; 2007. Available from: www.cstechnology.com [accessed: 13/06/2018].
  44. [44] Bekas C, Curioni A. A New Energy Aware Performance Metric. Computer Science - Research and Development. 2010; Vol. 25, N° 3:187–195.Google Scholar
  45. [45] Belady C, Rawson A, Pfleuger J. Green Grid Data Center Power Efficiency Metrics: PUE and DCIE. Beaverton, OR, USA; 2008. Available from: http://www.premiersolutionsco.com/wpcontent/uploads/TGG_Data_Center_Power_Efficiency_Metrics_PUE_and_DCiE.pdf [accessed: 29/06/2018].
  46. [46] Anderson D, Cader T, Darby T. A Framework for Data Center Energy Productivity: White Paper #13. Beaverton, OR, USA; 2008. Available from: https://www.greenbiz.com/sites/default/files/document/GreenGrid-Framework-Data-Center-Energy-Productivity.pdf [accessed: 13/06/2018].
  47. [47] Blackburn M. The Green Grid Data Center Compute Efficiency Metric: DCcE: White Paper #34. Beaverton, OR, USA; 2010. Available from: https://www.thegreengrid.org/en/resources/library-and-tools/240-WP [accessed: 13/06/2018].
  48. [48] Azevedo D, Patterson M, Pouchet J. Carbon Usage Effectiveness (CUE): A green grid data center sustainability metric – White Paper #32. Beaverton, OR, USA. Available from: http://tmp2014.airatwork.com/wp-content/uploads/The-Green-Grid-White-Paper-32-CUE-Usage-Guidelines.pdf [accessed: 13/06/2018].
  49. [49] Pakbaznia A, Pedram M. Minimizing Data Center Cooling and Server Power Costs. In: ACM/IEEE Proceedings on the International Symposium on Low Power Electronics and Design; 2009; p. 145–150.Google Scholar
  50. [50] Avelar V, Azevedo D, French A. PUE: A Comprehensive Examination of the Metric: White Paper #49. Beaverton, OR, USA; 2012. Available from: https://datacenters.lbl.gov/sites/all/files/WP49-PUE%20A%20Comprehensive%20Examination%20of%20the%20Metric_v6.pdf [accessed: 29/06/2018].
  51. [51] Kaplan J, Forrest W, Kindler N. Revolutionizing Data Center Energy Efficiency. New York, NY, USA: McKinsey und Company; 2008.Google Scholar
  52. [52] Spec. SPEC’s Benchmarks.: Standard Performance Evaluation Corporation. Available from: https://www.spec.org/benchmarks.html#power [accessed: 13/06/2018].
  53. [53] Avelar V, Azevedo D, French A. PUE: A Comprehensive Examination of the Metric: White Paper #49. Beaverton, OR, USA; 2012. Available from: https://datacenters.lbl.gov/sites/all/files/WP49-PUE%20A%20Comprehensive%20Examination%20of%20the%20Metric_v6.pdf [accessed: 16/06/2018].
  54. [54] Deutsche Energie-Agentur. Leistung steigern, Kosten senken: Energieeffizienz im Rechenzentrum: Ein Leitfaden für Geschäftsführer und IT-Verantwortliche. Berlin, Germany; 2012. Available from: https://www.dena.de/en/home/ [accessed: 29/06/2018].
  55. [55] Shah A, Bash C, Sharma R., Christian T, Watson B, Patel C. The environmental footprint of data centers. In: American Society of Mechanical Engineers: 2009 InterPACK Conference collocated with the ASME 2009 Summer Heat Transfer Conference and the ASME 2009 3rd International Conference on Energy Sustainability; 2009; p. 653–662.Google Scholar
  56. [56] Umweltbundesamt. Nachhaltige Entwicklung in Deutschland. Berlin, Germany: Umweltbundesamt; 2002.Google Scholar
  57. [57] Wang L, Khan S. Review of Performance Metrics for Green Data Centers: A Taxonomy Study. Journal of Supercomputer. 2013; Vol. 63:639–656. Available from: https://link.springer.com/content/pdf/10.1007%2Fs11227-011-0704-3.pdf [accessed: 13/06/2018]
  58. [58] Marwah M, Maciel P, Shah A, Sharma R, Christian T, Almeida V, Araujo C, Souza E, Callou G, Silva B, Galdino S, Pires J. Quantifying the Sustainability Impact of Data Center Availability. ACM SIGMETRICS Performance Evaluation. 2010; Vol. 37, N° 4:64–68. Available from: https://dl.acm.org/citation.cfm?id=1773405 [accessed: 13/06/2018].
  59. [59] ISO. ISO 14064: Environmental Management: Life Cycle Assessment - Principles and Framework. London, UK: British Standards Institution; 2006.Google Scholar
  60. [60] Aggar M, Banks M, Dietrich J. Data Centre Life Cycle Assessment Guidelines: White Paper #45. Beaverton, OR, USA; 2012. Available from: https://www.thegreengrid.org/en/resources/library-and-tools/236-Data-Center-Life-Cycle-Assessment-Guidelines [accessed: 29/06/2018].
  61. [61] Barroso L, Clidaras J, Hölzle U. The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale Machines. California, USA: Morgan & Claypool; 2009.Google Scholar
  62. [62] Schödwell B, Wilkens M, Erek K, Zarnekow R. Towards a holistic Multi-Level Green Performance Indicator Framework (GPIF) to improve the Energy Efficiency of Data Center Operation -A Resource Usage-Based Approach. In: IEEE: Electronics Goes Green 2012+(EGG); 2012; p. 1–6.Google Scholar
  63. [63] European Commission - Joint Research Centre - Institute for Environment and Sustainability. International Reference Life Cycle Data System (ILCD) Handbook: General guide for Life Cycle Assessment. Luxembourg, Luxembourg: Publications Office of the European Union; 2010.Google Scholar
  64. [64] Acton M, Bertoldi B, Booth J, Flucker S, Newcombe L, Rouyer A. 2017 Best Practice Guidelines for the EU Code of Conduct on Data Centre Energy Efficiency. [place unknown]; 2016. Available from: http://publications.jrc.ec.europa.eu/repository/bitstream/JRC104370/2017%20best%20practice%20guidelines%20v8.1.0%20final.pdf [accessed: 13/06/2018].
  65. [65] American Society of Heating, Refrigerating and Air-Conditioning Engineers. Data Center Networking Equipment – Issues and Best Practices: Whitepaper prepared by ASHRAE Technical Committee (TC) 9.9. Atlanta, GA, USA; 2013.Google Scholar
  66. [66] BITKOM. Reliable Data Centre: Guide. Berlin, Germany; 2013. Available from: https://www.bitkom.org/Bitkom/Publikationen/ [accessed: 29/06/2018].
  67. [67] BITKOM. Planungshilfe betriebssicheres Rechenzentrum. Berlin, Germany; 2014. Available from: https://www.bitkom.org/Bitkom/Publikationen/ [accessed: 29/06/2018]
  68. [68] European Commission. Study on the Review of the List of Critical Raw Materials. Brussels, Belgium; 2017. Available from: https://publications.europa.eu/en/publication-detail/-/publication/08fdab5f-9766-11e7-b92d-01aa75ed71a1/language-en [accessed: 29/06/2018].
  69. [69] Szczepaniak K. Das Rohstoffpotenzial von Rechenzentren: Quantifizierung kritischer Rohstoffe im Rechenzentrumsinventar zur Ermittlung des Grauen-Energie-Verbrauchs: Masterarbeit. Hamburg, Germany: Technische Universität Hamburg; 2018.Google Scholar
  70. [70] Spec. SPECpower_ssj2008: Dell Inc. PowerEdge M710HD. Available from: https://www.spec.org/power_ssj2008/results/res2011q3/power_ssj2008-20110901-00396.html [accessed: 13/06/2018].
  71. [71] Shehabi A, Smith S, Sartor D. United States Data Center Energy Usage Report. Berkeley, CA, USA; 2016 [accessed: 29/06/2018]. Available from: https://www.osti.gov/biblio/1372902-united-states-data-center-energy-usage-report.
  72. [72] The E-Server Consortium. Energy Efficient Servers in Europe: Energy consumption, saving potentials and measures to support market development for energy efficient solutions. Brussels, Belgium; 2008. Available from: https://ec.europa.eu/energy/intelligent/projects/sites/iee-projects/files/projects/documents/eserver_e_server_final_publishable_report_en.pdf [accessed: 13/06/2018].
  73. [73] Rasmussen N, Spitaels J. A Quantitative Comparison of High Efficiency AC vs. DC Power Distribution for Data Centers: White Paper 127. Schneider Electric; 2012. Available from: http://www.apc.com/salestools/NRAN-76TTJY/NRAN-76TTJY_R4_EN.pdf [accessed: 29/06/18].
  74. [74] Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit. Energieeffiziente Rechenzentren Best-Practice: Beispiele aus Europa, USA und Asien. Berlin, Germany; 2009. Available from: https://www.borderstep.de [accessed: 29/06/2018].
  75. [75] Oliveira F. Life Cycle Assessment of a High-Density Datacenter Cooling System. The TeliaSonera’s ”Green Room” Concept: Master of Science Thesis. Stockholm: Kungliga Tekniska Högskolan; 2012.Google Scholar
  76. [76] Ramesh T, Prakash R, Shukla KK. Life Cycle Energy Analysis of Buildings: An overview. Energy and Buildings. 2010; Vol. 42, N° 10:1592–1600.Google Scholar
  77. [77] Boehm M, Freundlieb M, Stolze C, Thomas O, Teuteberg F. Towards an Integrated Approach for Resource-Efficiency in Server Rooms and Data Centers. In: European Conference on Information Systems 2011 Proceedings; p. 1–13.Google Scholar
  78. [78] Newcombe L, Limbuwala Z, Latham P, Smith V. Data centre Fixed to Variable Energy Ratio metric DC-FVER: An alternative to useful work metrics which focuses operators on eliminating fixed energy consumption. Swindon, UK; 2012. Available from: https://www.bcs.org/upload/pdf/dc_fver_metric_v1.0.pdf [accessed: 29/06/2018].
  79. [79] United Nations Environment Program. Recycling Rates of Metals - A Status Report: A Report of the Working Group on the Global Metals Flows to the International Resource Panel. Paris, France; 2011.Google Scholar
  80. [80] Hagelüken C. Recycling of (Critical) Metals. In: Gunn, G.: Critical Metals Handbook; 2014.Google Scholar
  81. [81] Umweltbundesamt. Lebenszyklusbasierte Datenerhebung zu Umweltwirkungen des Cloudcomputing (Öko-Cloud-Computing). Dessau-Roßlau, Germany; 2017.Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Carl von Ossietzky UniversityOldenburgGermany
  2. 2.Technische Universität HamburgHamburgGermany

Personalised recommendations