Advertisement

Neuronale Veränderungen bei Computerspielsucht

  • Tobias C. BreinerEmail author
  • Luca D. Kolibius
Chapter

Zusammenfassung

In diesem Kapitel betrachten wir eingehend verschiedene empirische Studien, die sich mit dem Einfluss von Computerspielen auf das Gehirn befassen.

Literatur

  1. Anderson, C. A., & Bushman, B. J. (2001). Effects of violent video games on aggressive behavior, aggressive cognition, aggressive affect, physiological arousal, and prosocial behavior: A meta-analytic review of the scientific literature. Psychological Science, 12(5), 353–359.  https://doi.org/10.1111/1467-9280.00366.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Anderson, C. A., & Bushman, B. J. (2002). Human aggression. Annual Review of Psychology, 53(1), 27–51.  https://doi.org/10.1146/annurev.psych.53.100901.135231.CrossRefPubMedGoogle Scholar
  3. Bartholow, B. D., Bushman, B. J., & Sestir, M. A. (2006). Chronic violent video game exposure and desensitization to violence: Behavioral and event-related brain potential data. Journal of Experimental Social Psychology, 42(4), 532–539.  https://doi.org/10.1016/j.jesp.2005.08.006.CrossRefGoogle Scholar
  4. Cai, C., Yuan, K., Yin, J., Feng, D., Bi, Y., Li, Y., Yu, D., Jin, C., Qin, W., & Tian, J. (2015). Striatum morphometry is associated with cognitive control deficits and symptom severity in internet gaming disorder. Brain Imaging and Behavior, 10(1), 12–20.  https://doi.org/10.1007/s11682-015-9358-8.CrossRefGoogle Scholar
  5. Chang, L., Alicata, D., Ernst, T., & Volkow, N. (2007). Structural and metabolic brain changes in the striatum associated with methamphetamine abuse. Addiction, 102, 16–32.  https://doi.org/10.1111/j.1360-0443.2006.01782.x.CrossRefPubMedGoogle Scholar
  6. Chen, C., Huang, M., Yen, J., Chen, C., Liu, G., Yen, C., & Ko, C. (2014a). Brain correlates of response inhibition in internet gaming disorder. Psychiatry and Clinical Neurosciences, 69(4), 201–209.  https://doi.org/10.1111/pcn.12224.CrossRefPubMedGoogle Scholar
  7. Chen, X., Wang, Y., Zhou, Y., Sun, Y., Ding, W., Zhuang, Z., Xu, J., & Du, Y. (2014b). Different Resting-State functional connectivity alterations in smokers and nonsmokers with internet gaming addiction. BioMed Research International, 2014, 1–9.  https://doi.org/10.1155/2014/825787.CrossRefGoogle Scholar
  8. de Luca, M., Beckmann, C., Stefano, N. D., Matthews, P., & Smith, S. (2006). FMRI resting state networks define distinct modes of long-distance interactions in the human brain. NeuroImage, 29(4), 1359–1367.  https://doi.org/10.1016/j.neuroimage.2005.08.035.CrossRefPubMedGoogle Scholar
  9. Di Chiara, G., & Bassareo, V. (2007). Reward system and addiction: What dopamine does and doesn’t do. Current Opinion in Pharmacology, 7(1), 69–76.CrossRefGoogle Scholar
  10. Di Chiara, G., & North, R. A. (1992). Neurobiology of opiate abuse. Trends in Pharmacological Sciences, 13, 185–193.  https://doi.org/10.1016/0165-6147(92)90062-b.CrossRefPubMedGoogle Scholar
  11. Dong, G., DeVito, E. E., Du, X., & Cui, Z. (2012a). Impaired inhibitory control in ‘Internet addiction disorder’: A functional magnetic resonance imaging study. Psychiatry Research: Neuroimaging, 203(2–3), 153–158.  https://doi.org/10.1016/j.pscychresns.2012.02.001.CrossRefGoogle Scholar
  12. Dong, G., DeVito, E., Huang, J., & Du, X. (2012b). Diffusion tensor imaging reveals thalamus and posterior cingulate cortex abnormalities in internet gaming addicts. Journal of Psychiatric Research, 46(9), 1212–1216.  https://doi.org/10.1016/j.jpsychires.2012.05.015.CrossRefGoogle Scholar
  13. Dong, G., Hu, Y., Lin, X., & Lu, Q. (2013). What makes internet addicts continue playing online even when faced by severe negative consequences? Possible explanations from an fMRI study. Biological Psychology, 94(2), 282–289.  https://doi.org/10.1016/j.biopsycho.2013.07.009.CrossRefPubMedGoogle Scholar
  14. Dong, G., Huang, J., & Du, X. (2011). Enhanced reward sensitivity and decreased loss sensitivity in Internet addicts: An fMRI study during a guessing task. Journal of Psychiatric Research, 45(11), 1525–1529.  https://doi.org/10.1016/j.jpsychires.2011.06.017.CrossRefPubMedGoogle Scholar
  15. Dong, G., Lin, X., & Potenza, M. N. (2015). Decreased functional connectivity in an executive control network is related to impaired executive function in internet gaming disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 57, 76–85.  https://doi.org/10.1016/j.pnpbp.2014.10.012.CrossRefPubMedGoogle Scholar
  16. Farde, L., Nordström, A. L., Wiesel, F. A., Pauli, S., Halldin, C., & Sedvall, G. (1992). Positron emission tomographic analysis of central D1 and D2 dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine. Archives of General Psychiatry, 49(7), 538.  https://doi.org/10.1001/archpsyc.1992.01820070032005.CrossRefPubMedGoogle Scholar
  17. Feng, Q., Chen, X., Sun, J., Zhou, Y., Sun, Y., Ding, W., Zhang, Y., Zhuang, Z., Xu, J., & Du, Y. (2013). Voxel-level comparison of arterial spin-labeled perfusion magnetic resonance imaging in adolescents with Internet gaming addiction. Behavioral and Brain Functions, 9(1), 33.  https://doi.org/10.1186/1744-9081-9-33.CrossRefPubMedGoogle Scholar
  18. Han, D. H., Kim, Y. S., Lee, Y. S., Min, K. J., & Renshaw, P. F. (2010). Changes in cue-induced, prefrontal cortex activity with video-game play. Cyberpsychology, Behavior, and Social Networking, 13(6), 655–661.  https://doi.org/10.1089/cyber.2009.0327.CrossRefGoogle Scholar
  19. Han, D. H., Lyoo, I. K., & Renshaw, P. F. (2012). Differential regional gray matter volumes in patients with on-line game addiction and professional gamers. Journal of Psychiatric Research, 46(4), 507–515.  https://doi.org/10.1016/j.jpsychires.2012.01.004.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Hoeft, F., Watson, C. L., Kesler, S. R., Bettinger, K. E., & Reiss, A. L. (2008). Gender differences in the mesocorticolimbic system during computer game-play. Journal of Psychiatric Research, 42(4), 253–258.  https://doi.org/10.1016/j.jpsychires.2007.11.010.CrossRefPubMedGoogle Scholar
  21. Hong, S., Harrison, B. J., Dandash, O., Choi, E., Kim, S., Kim, H., Shim, D., Kim, C., Kim, J., & Yi, S. (2015). A selective involvement of putamen functional connectivity in youth with internet gaming disorder. Brain Research, 1602, 85–95.  https://doi.org/10.1016/j.brainres.2014.12.042.CrossRefPubMedGoogle Scholar
  22. Hou, H., Jia, S., Hu, S., Fan, R., Sun, W., Sun, T., & Zhang, H. (2012). Reduced striatal dopamine transporters in people with internet addiction disorder. Journal of Biomedicine and Biotechnology, 2012, 1–5.  https://doi.org/10.1155/2012/854524.CrossRefGoogle Scholar
  23. Jacobsen, L. K., Giedd, J. N., Gottschalk, C., Kosten, T. R., & Krystal, J. H. (2001). Quantitative morphology of the caudate and putamen in patients with cocaine dependence. American Journal of Psychiatry, 158(3), 486–489.  https://doi.org/10.1176/appi.ajp.158.3.486.CrossRefPubMedGoogle Scholar
  24. Kalivas, P. W., & Volkow, N. D. (2005). The neural basis of addiction: A pathology of motivation and choice. American Journal of Psychiatry, 162(8), 1403–1413.  https://doi.org/10.1176/appi.ajp.162.8.1403.CrossRefPubMedGoogle Scholar
  25. Kim, J., Son, J., Choi, W., Kim, Y., Oh, J., Lee, S., & Kim, J. (2014). Neural responses to various rewards and feedback in the brains of adolescent internet addicts detected by functional magnetic resonance imaging. Psychiatry and Clinical Neurosciences, 68(6), 463–470.  https://doi.org/10.1111/pcn.12154.CrossRefPubMedGoogle Scholar
  26. Ko, C., Hsieh, T., Chen, C., Yen, C., Chen, C., Yen, J., Wang, P., & Liu, G. (2014). Altered brain activation during response inhibition and error processing in subjects with Internet gaming disorder: A functional magnetic imaging study. European Archives of Psychiatry and Clinical Neuroscience, 264(8), 661–672.  https://doi.org/10.1007/s00406-013-0483-3.CrossRefPubMedGoogle Scholar
  27. Ko, C., Hsieh, T., Wang, P., Lin, W., Yen, C., Chen, C., & Yen, J. (2015). Altered gray matter density and disrupted functional connectivity of the amygdala in adults with Internet gaming disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 57, 185–192.  https://doi.org/10.1016/j.pnpbp.2014.11.003.CrossRefPubMedGoogle Scholar
  28. Ko, C., Liu, G., Hsiao, S., Yen, J., Yang, M., Lin, W., Yen, C., & Chen, C. (2009). Brain activities associated with gaming urge of online gaming addiction. Journal of Psychiatric Research, 43(7), 739–747.  https://doi.org/10.1016/j.jpsychires.2008.09.012.CrossRefPubMedGoogle Scholar
  29. Ko, C., Liu, G., Yen, J., Yen, C., Chen, C., & Lin, W. (2013). The brain activations for both cue-induced gaming urge and smoking craving among subjects comorbid with Internet gaming addiction and nicotine dependence. Journal of Psychiatric Research, 47(4), 486–493.  https://doi.org/10.1016/j.jpsychires.2012.11.008.CrossRefPubMedGoogle Scholar
  30. Koepp, M. J., Gunn, R. N., Lawrence, A. D., Cunningham, V. J., Dagher, A., Jones, T., Brooks, D. J., Bench, C. J., & Grasby, P. M. (1998). Evidence for striatal dopamine release during a video game. Nature, 393(6682), 266–268.  https://doi.org/10.1038/30498.CrossRefPubMedGoogle Scholar
  31. Koob, G. F. (1992). Drugs of abuse: Anatomy, pharmacology and function of reward pathways. Trends in Pharmacological Sciences, 13,177–184.  https://doi.org/10.1016/0165-6147(92)90060-j.CrossRefPubMedGoogle Scholar
  32. Kühn, S., Romanowski, A., Schilling, C., Lorenz, R., Mörsen, C., Seiferth, N., Banaschewski, T., Barbot, A., Barker, GJ., Büchel, C., Conrod, PJ., Dalley, JW., Flor, H., Garavan, H., Ittermann, B., Mann, K., Martinot, J-L., Paus, T., Rietschel, M., Smolka, MN., Ströhle, A., Walaszek, B., Schumann, G., Heinz, A., & Gallinat, J. (2011). The neural basis of video gaming. Translational Psychiatry, 1(11), e53.  https://doi.org/10.1038/tp.2011.53CrossRefGoogle Scholar
  33. Lam, L. T., & Peng, Z. (2010). Effect of pathological use of the Internet on adolescent mental health. Archives of Pediatrics & Adolescent Medicine, 164(10), , 901–906.  https://doi.org/10.1001/archpediatrics.2010.159
  34. Leeman, R. F., & Potenza, M. N. (2012). Similarities and differences between pathological gambling and substance use disorders: A focus on impulsivity and compulsivity. Psychopharmacology, 219(2), 469–490.  https://doi.org/10.1007/s00213-011-2550-7.CrossRefPubMedGoogle Scholar
  35. Lin, X., Dong, G., Wang, Q., & Du, X. (2015). Abnormal gray matter and white matter volume in ‘Internet gaming addicts’. Addictive Behaviors, 40, 137–143.  https://doi.org/10.1016/j.addbeh.2014.09.010.CrossRefPubMedGoogle Scholar
  36. Linnet, J., Peterson, E., Doudet, D. J., Gjedde, A., & Møller, A. (2010). Dopamine release in ventral striatum of pathological gamblers losing money. Acta Psychiatrica Scandinavica, 122(4), 326–333.  https://doi.org/10.1111/j.1600-0447.2010.01591.x.CrossRefPubMedGoogle Scholar
  37. Liu, G., Yen, J., Chen, C., Yen, C., Chen, C., Lin, W., & Ko, C. (2014). Brain activation for response inhibition under gaming cue distraction in internet gaming disorder. The Kaohsiung Journal of Medical Sciences, 30(1), 43–51.  https://doi.org/10.1016/j.kjms.2013.08.005.CrossRefPubMedGoogle Scholar
  38. Mathiak, K., & Weber, R. (2006). Toward brain correlates of natural behavior: FMRI during violent video games. Human Brain Mapping, 27(12), 948–956.  https://doi.org/10.1002/hbm.20234.CrossRefPubMedGoogle Scholar
  39. Park, C., Chun, J., Cho, H., Jung, Y., Choi, J., & Kim, D. J. (2015). Is the internet gaming-addicted brain close to be in a pathological state? Addiction Biology, 22(1), 196–205.  https://doi.org/10.1111/adb.12282.CrossRefPubMedGoogle Scholar
  40. Park, H. S., Kim, S. H., Bang, S. A., Yoon, E. J., Cho, S. S., & Kim, S. E. (2010). Altered regional cerebral glucose metabolism in internet game overusers: A 18F-fluorodeoxyglucose positron emission tomography study. CNS Spectrums, 15(03), 159–166.  https://doi.org/10.1017/s1092852900027437.CrossRefPubMedGoogle Scholar
  41. Schlagenhauf, F., Sterzer, P., Schmack, K., Ballmaier, M., Rapp, M., Wrase, J., Gallinat, J., Heinz, A., & Juckel, G. (2009). Reward feedback alterations in unmedicated schizophrenia patients: Relevance for delusions. Biological Psychiatry, 65(12), 1032–1039.  https://doi.org/10.1016/j.biopsych.2008.12.016.CrossRefPubMedGoogle Scholar
  42. Tian, M., Chen, Q., Zhang, Y., Du, F., Hou, H., Chao, F., & Zhang, H. (2014). PET imaging reveals brain functional changes in internet gaming disorder. European Journal of Nuclear Medicine and Molecular Imaging, 41(7), 1388–1397.  https://doi.org/10.1007/s00259-014-2708-8.CrossRefPubMedGoogle Scholar
  43. Tian, M., Tao, R., Zheng, Y., Zhang, H., Yang, G., Li, Q., & Liu, X. (2018). Internet gaming disorder in adolescents is linked to delay discounting but not probability discounting. Computers in Human Behavior, 80, 59–66.CrossRefGoogle Scholar
  44. Volkow, N. D., Chang, L., Wang, G., Fowler, J. S., Ding, Y., Sedler, M., Logan, J., Franceschi, D., Gatley, J., & Hitzemann, R. (2001). Low Level of brain dopamine D2 receptors in methamphetamine abusers: Association with metabolism in the orbitofrontal cortex. American Journal of Psychiatry, 158(12), 2015–2021.  https://doi.org/10.1176/appi.ajp.158.12.2015.CrossRefPubMedGoogle Scholar
  45. Volkow, N. D., Fowler, J. S., Wang, G., Hitzemann, R., Logan, J., Schlyer, D. J., Dewey, S. L., & Wolf, A. P. (1993). Decreased dopamine D2 receptor availability is associated with reduced frontal metabolism in cocaine abusers. Synapse, 14(2), 169–177.  https://doi.org/10.1002/syn.890140210.CrossRefPubMedGoogle Scholar
  46. Volkow, N. D., Wang, G., Fowler, J. S., Logan, J., Hitzemann, R., Ding, Y., Pappas, N., Shea, C., & Piscani, K. (1996). Decreases in dopamine receptors but not in dopamine transporters in alcoholics. Alcoholism: Clinical and Experimental Research, 20(9), 1594–1598.  https://doi.org/10.1111/j.1530-0277.1996.tb05936.x.CrossRefGoogle Scholar
  47. Volkow, N. D., Wang, G., Fowler, J. S., Logan, J., Schlyer, D., Hitzemann, R., Lieberman, J., Angrist, B, Pappas, N, & MacGregor, R. (1994). Imaging endogenous dopamine competition with [11C]raclopride in the human brain. Synapse, 16(4), 255–262.  https://doi.org/10.1002/syn.890160402.CrossRefPubMedGoogle Scholar
  48. Volkow, N. D., Wang, G., Fowler, J. S., Tomasi, D., Telang, F., & Baler, R. (2010). Addiction: Decreased reward sensitivity and increased expectation sensitivity conspire to overwhelm the brains control circuit. BioEssays, 32(9), 748–755.  https://doi.org/10.1002/bies.201000042.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Wang, G., Volkow, N. D., Fowler, J. S., Logan, J., Abumrad, N. N., Hitzemann, R. J., Pappas, N. S., & Pascani, K. (1997). Dopamine D2 receptor availability in opiate-dependent subjects before and after naloxone-precipitated withdrawal. Neuropsychopharmacology, 16(2), 174–182.  https://doi.org/10.1016/s0893-133x(96)00184-4.CrossRefPubMedGoogle Scholar
  50. Wang, H., Jin, C., Yuan, K., Shakir, T. M., Mao, C., Niu, X., Liping, G., & Ming, Z. (2015). The alteration of gray matter volume and cognitive control in adolescents with internet gaming disorder. Frontiers in Behavioral Neuroscience, 9, 64.  https://doi.org/10.3389/fnbeh.2015.00064.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Wee, C., Zhao, Z., Yap, P., Wu, G., Shi, F., Price, T., Du, Y., Xu, J., Zhou, Y., Shen, D., & Hayasaka, S. (2014). Disrupted brain functional network in Internet addiction disorder: A resting-state functional magnetic resonance imaging study. PLoS ONE, 9(9), , e107306.  https://doi.org/10.1371/journal.pone.0107306CrossRefGoogle Scholar
  52. Weinstein, A. M. (2010). Computer and video game addiction – A comparison between game users and non-game users. The American Journal of Drug and Alcohol Abuse, 36(5), 268–276.  https://doi.org/10.3109/00952990.2010.491879.CrossRefPubMedGoogle Scholar
  53. Weinstein, A., Livny, A., & Weizman, A. (2017). New developments in brain research of internet and gaming disorder. Neuroscience & Biobehavioral Reviews, 75, 314–330.  https://doi.org/10.1016/j.neubiorev.2017.01.040.CrossRefGoogle Scholar
  54. Wise, R. A. (1996). Neurobiology of addiction. Current Opinion in Neurobiology, 6(2), 243–251.  https://doi.org/10.1016/s0959-4388(96)80079-1.CrossRefPubMedGoogle Scholar
  55. Wrase, J., Makris, N., Braus, D. F., Mann, K., Smolka, M. N., Kennedy, D. N., Caviness, V. S., Hodge, S. M., Tang, L., Albaugh, M, Ziegler, D. A., Davis, O. C., Kissling, C., Schumann, G., Breiter, H. C., & Heinz, A. (2008). Amygdala volume associated with alcohol abuse relapse and craving. American Journal of Psychiatry, 165(9), 1179–1184.  https://doi.org/10.1176/appi.ajp.2008.07121877.CrossRefPubMedGoogle Scholar
  56. Yuan, K., Qin, W., Wang, G., Zeng, F., Zhao, L., Yang, X., Liu, P., Liu, J., Sun, J., von, D., Karen, M., Gong, Q., Liu, Y., & Tian, J. (2011). Microstructure abnormalities in adolescents with Internet addiction disorder. PLoS ONE, 6(6), , e20708.  https://doi.org/10.1371/journal.pone.0020708CrossRefGoogle Scholar
  57. Yuan, K., Qin, W., Yu, D., Bi, Y., Xing, L., Jin, C., & Tian, J. (2016). Core brain networks interactions and cognitive control in internet gaming disorder individuals in late adolescence/early adulthood. Brain Structure and Function, 221(3), 1427–1442.  https://doi.org/10.1007/s00429-014-0982-7.CrossRefPubMedGoogle Scholar
  58. Zhang, J., Yao, Y., Li, C. R., Zang, Y., Shen, Z., Liu, L., Wang, L. J., Liu, B., & Fang, X. Y. (2015). Altered resting-state functional connectivity of the insula in young adults with internet gaming disorder. Addiction Biology, 21(3), 743–751.  https://doi.org/10.1111/adb.12247.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Zhou, Y., Lin, F. C., Du, Y. S., Qin, L. D., Zhao, Z. M., Xu, J. R., & Lei, H. (2011). Gray matter abnormalities in Internet addiction: A voxel-based morphometry study. European Journal of Radiology, 79(1), 92–95.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Fakultät InformatikHochschule KemptenKemptenDeutschland
  2. 2.FriedrichsdorfDeutschland

Personalised recommendations