Advertisement

Physische Aggressionsursachen

  • Tobias C. BreinerEmail author
  • Luca D. Kolibius
Chapter

Zusammenfassung

Um das Wesen der Aggression vollständig zu verstehen, ist es notwendig, nicht nur rein psychologische Studien und Modelle zu berücksichtigen, sondern auch interdisziplinäre Betrachtungsweisen über physische Aggressionsursachen zu integrieren: Insbesondere Studien und Erkenntnisse aus der Hirnanatomie, der Biochemie, der Endokrinologie und der Genetik können Indizien für oder gegen bestimmte Aggressionsmodelle liefern.

Daher werden in diesem Kapitel medizinische Studien präsentiert, welche die komplexe Verflechtung zwischen bestimmten Genen, Enzymen, Neurotransmittern, Hormonen, hirnanatomischen Veränderungen und der Disposition zu aggressiven Verhaltensweisen auf übersichtliche Weise aufzeigen.

Die Studienobjekte, auf die in diesem Kapitel eingegangen werden, umfassen den präfrontalen Cortex und die Amygdala (Hirnanatomie), Dopamin, Serotonin und Adrenalin (Neurotransmitter), Testosteron, Dehydroepiandrosteron, DHEA-Sulfat, Prolaktin und Cortisol (Hormone), Monoaminooxidase-A (Enzym) und das „Krieger-Gen“ auf dem Standort Xp11.3 (Gen).

Literatur

  1. Ackermann, S., Hartmann, F., Papassotiropoulos, A., de Quervain, D. J. -F., & Rasch, B. (2013). Associations between basal cortisol levels and memory Retrieval in healthy young individuals. Journal of Cognitive Neuroscience, 25(11), 1896–1907. https://doi.org//10.1162/jocn_a_00440.PubMedGoogle Scholar
  2. Archer, J. (1991). The influence of testosterone on human aggression. British Journal of Psychology, 82, 1–28.PubMedGoogle Scholar
  3. Aromaki, A. S., Lindman, R. E., & Eriksson, C. J. (2002). Testosterone, sexuality and antisocial personality in rapists and child molesters: A pilot study. Psychiatry Research, 110(3), 239–247. https://doi.org/10.1016/S0165-1781(02)00109-9.PubMedGoogle Scholar
  4. Bain, J., Langevin, R., Dickey, R., et al. (1988a). Hormones in sexually aggressive men. Annals of Sex Research, 1(1), 63.  https://doi.org/10.1007/bf00852883.Google Scholar
  5. Bain, J., Langevin, R., Hucker, S., et al. (1988b). Sex hormones in pedophiles. Annals of Sex Research, 1(1), 443.  https://doi.org/10.1007/bf00878108.Google Scholar
  6. Banks, T., & Dabbs, J. (1996). Salivary testosterone and cortisol in a delinquent and violent urban subculture. Journal Social Psychology, 136, 49–56.Google Scholar
  7. Barry, J. A., Moran, E., Parekh, H. S., Morewood, T., Thomas, M., & Hardiman, P. J. (2014). Prolactin and aggression in women with fertility problems. Journal of Obstetrics and Gynaecology, 34(7), 605–610. http://doi.org/10.3109/01443615.2014.901302.PubMedPubMedCentralGoogle Scholar
  8. Batrinos, M. L. (2012). Testosterone and aggressive behavior in man. International Journal of Endocrinology and Metabolism , 10(3), 563–568.  https://doi.org/10.5812/ijem.3661.Google Scholar
  9. Beaver, K., DeLisi, M., Vaughn, M., & Barnes J. C. (2010). Monoamine oxidase A genotype is associated with gang membership and weapon use. Comprehensive Psychiatry, 51(2), 130–134.  https://doi.org/10.1016/j.comppsych.2009.03.010.PubMedGoogle Scholar
  10. Bigelow, H. J. (1850). Dr. Harlow‘s case of recovery from the passage of an iron bar through the head. American Journal of the Medical Sciences, 20, 13–22.Google Scholar
  11. Blech, J. (11. August 2010). Epigenetik – Die Mär vom Krieger-Gen. Spiegel-Online. http://www.spiegel.de/wissenschaft/natur/epigenetik-die-maer-vom-krieger-gen-a-711227.html. Zugegriffen: 20. Mai 2017.
  12. Brunner, H. G., Nelen, M. R., van Zandvoort, P., Abeling, N. G., van Gennip, E. C., Wolters, A. H., Kuiper, M. A., Ropers, H. H., & van Oost, B. A. (1993a). X-linked borderline mental retardation with prominent behavioral disturbance: Phenotype, genetic localization, and evidence for disturbed monoamine metabolism. American Journal of Human Genetics, 52(6), 1032–1039.Google Scholar
  13. Brunner, H. G., Nelen, M., Breakefield, X. O., Ropers H. H., & van Oost, B. A. (1993b). Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A. Science, 262(5133), 578–580.PubMedGoogle Scholar
  14. Carre, J. M., Putnam, S. K., & McCormick, C. M. (2009). Testosterone responses to competition predict future aggressive behaviour at a cost to reward in men. Psychoneuroendocrinology, 34(4), 561–570.  https://doi.org/10.1016/j.psyneuen.2008.10.018.PubMedGoogle Scholar
  15. Caspi, A., McClay, J., Moffitt, T. E., Mill, J., Martin, J., Craig, I. W., et al. (2002). Role of genotype in the cycle of violence in maltreated children. Science, 297, 851–854.  https://doi.org/10.1126/science.1072290.PubMedGoogle Scholar
  16. Chester, D. S., DeWall, C. N., Derefinko, K. J., Estus, S., Peters, JR., Lynam, D. R., & Jiang, Y. (2015). Monoamine Oxidase A (MAOA) genotype predicts greater aggression through impulsive reactivity to negative affect. Behavioural Brain Research, 283, 97–101. https://doi.org/10.1016/j.bbr.2015.01.034.PubMedPubMedCentralGoogle Scholar
  17. Coccaro, E. F., Fitzgerald, D. A., Lee, R., McCloskey, M., & Luan Phan, K. (2016). Frontolimbic morphometric abnormalities in intermittent explosive disorder and aggression. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 1, 32–38.  https://doi.org/10.1016/j.bpsc.2015.09.006.Google Scholar
  18. Consiglio, A. R., & Bridges, R. S. (2009). Circulating prolactin, MPOA prolactin receptor expression and maternal aggression in lactating rats. Behavioural Brain Research, 197(1), 97–102.  https://doi.org/10.1016/j.bbr.2008.08.006.PubMedGoogle Scholar
  19. Dabbs, J. M., Jr., Frady, R. L., Carr, T. S., & Besch, N. F. (1987). Saliva testosterone and criminal violence in young adult prison inmates. Psychosomatic Medicine, 49(2), 174–182.PubMedGoogle Scholar
  20. Dabbs, J. M., Jr., & Ruback, R. B. (1988). Saliva testosterone and personality of male college students. Bulletin of the Psychonomic Society, 26, 244. https://doi.org/10.3758/bf03337300.Google Scholar
  21. Damásio, H., et al. (1994). The return of Phineas Gage: Clues about the brain from the skull of a famous patient. Science, 264(5162), 1102–1105.PubMedGoogle Scholar
  22. Ehlers, C. L., Richler, K. C., & Hovey, J. E. (1980). A possible relationship between plasma testosterone and aggressive behavior in a female outpatient population. In M. Girgis & I. G. Kiloh (Hrsg.), Limbic Epilepsy and the Dyscontrol Syndrome (S. 183–194). Amsterdam: Elsevier.Google Scholar
  23. Ehrenkranz, J., Bliss, E., & Sheard, M. H. (1974). Plasma testosterone: correlation with aggressive behavior and social dominance in man. Psychosomatic Medicine, 36(6), 469–475.PubMedGoogle Scholar
  24. Farrell, S. F., & McGinnis, M. Y. (2003). Effects of pubertal anabolic-androgenic steroid (AAS) administration on reproductive and aggressive behaviors in male rats. Behavioral Neuroscience, 117, 904–911.  https://doi.org/10.1037/0735-7044.117.5.904.PubMedGoogle Scholar
  25. Fava, G. A., Fava, M., Kellner, R., Serafini, E., & Mastrogiacomo, I. (1981). Depression hostility and anxiety in hyperprolactinemic amenorrhea. Psychotherapy and Psychosomatics, 36, 122–128.PubMedGoogle Scholar
  26. Fava, M., Fava, G. A., Kellner, R., Serafini, E., & Mastrogiacomo, I. (1982). Depression and hostility in hyperprolactinemia. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 6(4–6), 479–482.PubMedGoogle Scholar
  27. Fava, M., Serafini, E., De Besi, L., Adami, A., & Mastrogiacomo I. (1988). Mastrogiacomo Ismaele Hyperprolactinemia and psychological distress in women undergoing chronic hemodialysis. Psychotherapy and Psychosomatics, 49, 6–9.PubMedGoogle Scholar
  28. Fergusson, D. M., Boden, J. M., Horwood, L. J., Miller, A., & Kennedy, M. A. (2012). Moderating role of the MAOA genotype in antisocial behaviour. The British Journal of Psychiatry, 200(2), 116–123.  https://doi.org/10.1192/bjp.bp.111.093328.PubMedGoogle Scholar
  29. Gen-ethisches Netzwerk e.V. (2017). Krieger. https://www.gen-ethisches-netzwerk.de/gen-fuer/krieger. Zugegriffen: 20. Mai 2017.
  30. Gentile, D. A., Bender, P., & Anderson, C. A. (2017). Violent video game effects on salivary cortisol, arousal, and aggressive thoughts in children. Computers in Human Behavior, 70, 39–43.  https://doi.org/10.1016/j.chb.2016.12.045.Google Scholar
  31. Giotakos, O., Markianos, M., Vaidakis, N., & Christodoulou, G. N. (2003). Aggression, impulsivity, plasma sex hormones, and biogenic amine turnover in a forensic population of rapists. Journal of Sex and Marital Therapy, 29(3), 215–225.  https://doi.org/10.1080/00926230390155113.PubMedGoogle Scholar
  32. Giovenardi, M., Consiglio, A. R., Barros, H. M. T., & Lucion, A. B. (2000). Pup age and aggressive behavior in lactating rats. Brazilian Journal of Medical and Biological Research, 33(9), 1083–1088.  https://doi.org/10.1590/S0100-879X2000000900015.PubMedGoogle Scholar
  33. Grafman, J., Schwab, K., Warden, D., Pridgen, A., Brown, H. R., & Salazar A. M. (1996). Frontal lobe injuries, violence, and aggression: A report of the Vietnam Head Injury Study. Neurology, 46(5).PubMedGoogle Scholar
  34. Hall D., Green M., Chambers G., & Lea R. (2006). Tracking the evolutionary history of the warrior gene in the South Pacific. 11th International Human Genetics Meeting of August 6–10, Brisbane. https://doi.org/10.1126/science.304.5672.818a.Google Scholar
  35. Herting, M. M., Gautam, P., Spielberg, J. M., Kann, E., Dahl, R. E., & Sowell, E. R. (2014). The role of testosterone and estradiol in brain volume changes across adolescence: A longitudinal structural MRI study. Human Brain Mapping, 35(11), 5633–5645.  https://doi.org/10.1002/hbm.22575. PMID: 24977395, PMCID: PMC4452029.PubMedPubMedCentralGoogle Scholar
  36. Inoff-Germain, G., Arnold, G. S., Nottelmann, E. D.; Susman, E. J., Cutler Jr., G. B., & Chrousos, G. P. (1988). Relations between hormone levels and observational measures of aggressive behavior of young adolescents in family interactions. Developmental Psychology, 24 (1), 129–139.Google Scholar
  37. Kellner, R., Buckman, M. T., Fava, G. A., & Pathak, D. (1984a). Hyperprolactinemia, distress, and hostility. American Journal of Psychiatry, 141, 759–763.PubMedGoogle Scholar
  38. Kellner, R., Buckman, M. T., Fava, M., Fava, G. A., & Mastrogiacomo, I. (1984b). Prolactin, aggression and hostility: A discussion of recent studies. Psychiatric Developments Journal, 2(2), 131–138.Google Scholar
  39. Kihlstrom, J. F. (2010). Social neuroscience: The footprints of Phineas Gage. Social Cognition, 28(6), 757–782.Google Scholar
  40. Kotowicz, Z. (2007). The strange case of Phineas Gage. History of the Human Sciences, 20(1), 115–131. https://doi.org/10.1177/0952695106075178.Google Scholar
  41. Kreuz, L. E., Rose, R. M., & Jennings J. R. (1972). Suppression of plasma testosterone levels and psychological stress. A longitudinal study of young men in Officer Candidate School. Archives of General Psychiatry, 26(5), 479–482. PMID: 5019887.Google Scholar
  42. Kreuz, L. E., & Rose, R. M. (1972). Assessment of aggressive behavior and plasma testosterone in a young criminal population. Psychosomatic Medicine, 34(4), 321–332.PubMedGoogle Scholar
  43. Krüger, T. H., Haake, P., Chereath, D., Knapp, W., Janssen, O. E., Exton, M. S., Schedlowski, M., & Hartmann, U. (2003a). Specificity of the neuroendocrine response to orgasm during sexual arousal in men. Journal of Endocrinology, 177(1), 57–64.PubMedGoogle Scholar
  44. Krüger, T. H., Haake, P., Haverkamp, J., Krämer, M., Exton, M. S., Saller, B., Leygraf, N., Hartmann, U., & Schedlowski, M. (2003b). Effects of acute prolactin manipulation on sexual drive and function in males. Journal of Endocrinology, 179(3), 357–365. https://doi.org/10.1177%2F070674370304800411.PubMedGoogle Scholar
  45. Lea, R., & Chambers, G. (2007). Monoamine oxidase, addiction, and the “warrior” gene hypothesis. New Zealand Medical Journal, 120(1250). PMID: 17339897.Google Scholar
  46. Lovallo, W. R., Whitsett, T. L., al’ Absi, M., Sung, B. H., Vincent, A. S., & Wilson, M. F. (2005). Caffeine stimulation of cortisol secretion across the waking hours in relation to caffeine intake levels. Psychosomatic Medicine, 67(5), 734–739. https://doi.org/10.1097/01.psy.0000181270.20036.06.PubMedPubMedCentralGoogle Scholar
  47. Mastrogiacomo, I., Fava, M., Fava, G. A., Kellner, R., Grismondi, G., & Cetera, C. (1982). Postpartum hostility and prolactin. International Journal of Psychiatry in Medicine, 12, 289–294.PubMedGoogle Scholar
  48. McDermott, R., Tingley, D., Cowden, J., Frazetto, G., & Johnson, D. D. P. (2009). Monoamine oxidase A gene (MAOA) predicts behavioral aggression following provocation. Proceedings of the National Acadamy of Science of the United States of America (PNAS), 106(7), 2118–2123. https://doi.org/10.1073/pnas.0808376106 http://www.pnas.org/content/106/7/2118.full. Zugegriffen: 11. Apr. 2017.Google Scholar
  49. McIntyre, A. W. (2011). The relationship of testosterone and 5-HAT to aggressive, self-aggressive, and antisocial behavior in Men (Paper 247). Masterarbeit an der University of Southern Mississippi. http://aquila.usm.edu/masters_theses/247. Zugegriffen: 22. Mai 2017.
  50. Mehta, P. H., & Josephs, R. A. (2010). Testosterone and cortisol jointly regulate dominance: Evidence for a dual-hormone hypothesis. Hormones and Behavior, 58(5), 898–906. https://doi.org/10.1016/j.yhbeh.2010.08.020. Epub 2010 Sep 15.PubMedGoogle Scholar
  51. Mehta, P. H., Welker, K. M., Zilioli, S., & Carré, J. M. (2015). Testosterone and cortisol jointly modulate risk-taking. Psychoneuroendocrinology, 56, 88–99. https://doi.org/10.1016/j.psyneuen.2015.02.023. Epub 2015 Mar 6, PMID: 25813123.PubMedGoogle Scholar
  52. Montoya, E. R., Terburg, D., Bos, P. A., & van Honk, J. (2012). Testosterone, cortisol, and serotonin as key regulators of social aggression: A review and theoretical perspective. Motivation and Emotion, 36(1), 65–73. PMID: 22448079, PMCID: PMC3294220.PubMedPubMedCentralGoogle Scholar
  53. Nave, G., Nadler, A., Zava, D., & Camerer, C. (2017). Single dose testosterone administration impairs cognitive reflection in men. Psychological Science, 28(10), 1398–1407. https://doi.org/10.1177%2F0956797617709592.PubMedGoogle Scholar
  54. Nguyen, T. V., McCracken, J. T., Albaugh, M. D., Botteron, K. N., Hudziak, J. J., & Ducharme, S. (2016). A testosterone-related structural brain phenotype predicts aggressive behavior from childhood to adulthood. Psychoneuroendocrinology, 63, 109–118.  https://doi.org/10.1016/j.psyneuen.2015.09.021. Epub 2015 Sep 25, PMID: 26431805.PubMedGoogle Scholar
  55. Numan, M. (1988). Neural basis of maternal behavior in the rat. Psychoneuroendocrinology, 13, 47–62.PubMedGoogle Scholar
  56. O‘Connor, D. B., Archer, J., Hair, W. M., & Wu, F. C. (2002). Exogenous testosterone, aggression, and mood in eugonadal and hypogonadal men. Physiology Behavior, 75(4), 557–566.  https://doi.org/10.1016/S0031-9384(02)00647-9.Google Scholar
  57. Persky, H., Lief, H. L., Strauss, D., Miller, W. R., & O’Brien, C. P. (1979). Plasma testosterone level and sexual behavior of couples. Archives of Sexual Behaviour, 7(3), 157–73.PubMedGoogle Scholar
  58. Peterson, C. K., & Harmon-Jones, E. (2012). Anger and testosterone: Evidence that situationally-induced anger relates to situationally-induced testosterone. Emotion, 12(5), 899–902.  https://doi.org/10.1037/a0025300.PubMedGoogle Scholar
  59. Pietrini, P., Guazzelli, M., Basso, G., Jaffe, K., & Grafman, J. (2000). Neural correlates of imaginal aggressive behavior assessed by positron emission tomography in healthy subjects. American Journal of Psychiatry, 157, 1772–1781.  https://doi.org/10.1176/appi.ajp.157.11.1772.PubMedGoogle Scholar
  60. Platje, E., Popma, A., Vermeiren, R. R. J. M., Doreleijers, T. A. H., Meeus, W. H. J., van Lier, P. A. C., et al. (2015). Testosterone and cortisol in relation to aggression in a non-clinical sample of boys and girls. Aggressive Behavior, 41, 478–487.  https://doi.org/10.1002/ab.21585.PubMedGoogle Scholar
  61. Raine, A., Lencz, T., Bihrle, S., LaCasse, L., & Colletti, P. (2000). Reduced prefrontal gray matter volume and reduced autonomic activity in antisocial personality disorder. Archives of General Psychiatry, 57, 119–127.  https://doi.org/10.1001/archpsyc.57.2.119.PubMedGoogle Scholar
  62. Raine, A., Lencz, T., Taylor, K., Hellige, J. B., Bihrle, S., LaCasse, L., et al. (2003). Corpus callosum abnormalities in psychopathic antisocial individuals. Archives of General Psychiatry, 60, 1134–1142.  https://doi.org/10.1001/archpsyc.60.11.1134.PubMedGoogle Scholar
  63. Reavley, S., Fisher, A. D., Owen, D., Creed, F. H., & Davis, J. R. E. (1997). Psychological distress in patients with hyperprolactinaemia. Clinical Endocrinology, 47, 343–348.  https://doi.org/10.1046/j.1365-2265.1997.2701073.x.PubMedGoogle Scholar
  64. Salas-Ramirez, K. Y., Montalto, P. R., & Sisk, C. L. (2008). Anabolic androgenic steroids differentially affect social behaviors in adolescent and adult male Syrian hamsters. Hormones and Behavior, 53, 378–385.  https://doi.org/10.1016/j.yhbeh.2007.11.004.PubMedGoogle Scholar
  65. Scotti, M. A., Schmidt, K. L., Newman, A. E., Bonu, T., Soma, K. K., & Demas, G. E. (2009). Aggressive encounters differentially affect serum dehydroepiandrosterone and testosterone concentrations in male Siberian hamsters (Phodopus sungorus). Hormones and Behavior, 56(4), 376–381.  https://doi.org/10.1016/j.yhbeh.2009.07.004.PubMedGoogle Scholar
  66. Séguin, J. R. (2009). The frontal lobe and aggression. The European Journal of Developmental Psychology, 6(1), 100–119.  https://doi.org/10.1080/17405620701669871.PubMedPubMedCentralGoogle Scholar
  67. Sjöberg, R. L., Ducci, F., Barr, C. S., Newman, T. K, Dell’osso, L., Virkkunen, M., et al. (2008). A non-additive interaction of a functional MAO-A VNTR and testosterone predicts antisocial behavior. Neuropsychopharmacology, 33(2), 425–430.  https://doi.org/10.1038/sj.npp.1301417. PMC 2665792, PMID 17429405.PubMedPubMedCentralGoogle Scholar
  68. Soma, K. K., Rendon, N. M., Boonstra, R., Albers, H. E., & Demas, G. E. (2015). DHEA effects on brain and behavior: Insights from comparative studies of aggression. The Journal of Steroid Biochemistry and Molecular Biology, 145, 261–272.  https://doi.org/10.1016/j.jsbmb.2014.05.011. Epub 2014 Jun 11.PubMedGoogle Scholar
  69. Tackett, J. L., Herzhoff, K., Harden, K. P., Page-Gould, E., & Josephs, R. A. (2014). Personality × hormone interactions in adolescent externalizing psychopathology. Personality Disorder, 5(3), 235–246.  https://doi.org/10.1037/per0000075. Epub 2014 Jun 16, PMID: 24932763.Google Scholar
  70. Wang, T. J., Huang, S. Y., Lin, W. W., Lo, H. Y., Wu, P. L., Wang, Y. S., et al. (2007). Possible interaction between MAOA and DRD2 genes associated with antisocial alcoholism among Han Chinese men in Taiwan. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 31(1), 108–114.  https://doi.org/10.1016/j.pnpbp.2006.08.010. PMID 17007976.PubMedGoogle Scholar
  71. Wibral, M., Dohmen, T., Kingmüller, D., Weber, B., & Falk, A. (2012). Testosterone administration reduces lying in men. PLoS ONE, 7(10), e46774.  https://doi.org/10.1371/journal.pone.0046774.PubMedPubMedCentralGoogle Scholar
  72. Wörmann, F. G., Tebartz van Elst, L., Koepp, M. J., Free, S. L., Thompson, P. J., Trimble, M. R., & Duncan, J. S. (2000). Reduction of frontal neocortical grey matter associated with affective aggression in patients with temporal lobe epilepsy: An objective voxel by voxel analysis of automatically segmented MRI. Journal of Neurology, Neurosurgery, and Psychiatry, 68, 162–169.  https://doi.org/10.1136/jnnp.68.2.162.Google Scholar
  73. Zilioli, S., & Watson, N. V. (2014). Testosterone across successive competitions: Evidence for a ‘winner effect’ in humans? Psychoneuroendocrinology, 47, 1–9.  https://doi.org/10.1016/j.psyneuen.2014.05.001.PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Fakultät InformatikHochschule KemptenKemptenDeutschland
  2. 2.FriedrichsdorfDeutschland

Personalised recommendations