Advertisement

Auktionen in logistischen Systemen

  • Dirk Briskorn
Chapter
Part of the Fachwissen Logistik book series (FACHLOG)

Zusammenfassung

Das Kapitel vermittelt zunächst Strukturwissen über verschiedene Auktionsformate. Dabei wird die Versteigerung von einzelnen Gütern sowie die simultane Versteigerung mehrerer homogener Güter und mehrerer heterogener Güter unterschieden. Im Anschluss stellt das Kapitel auf Anwendungsbeispiele im Kontext logistischer Planungsprobleme ab. Diese belegen zum Einen wie unterschiedlich die Anwendungsmöglichkeiten von Auktionen sind, zum Anderen aber auch wie individuell die jeweilige Auktion entworfen werden muss, wenn sie zu effizienten Lösungen führen soll.

Schlüsselwörter

Lenkungssystem Leistungssystem Modellierung Architektur Integration 

Literatur

  1. Ausubel, L.M.: An efficient ascending-bid auction for multiple objects. American Economic Review 94(5), 1452–1475 (2004)Google Scholar
  2. Ausubel, L.M., Cramton, P.: Auctioning many divisible goods. Journal of the European Economic Association 2(2–3), 480–493 (2004)Google Scholar
  3. Ausubel, L.M., Milgrom, P.: Ascending Proxy Auctions, pp. 79–98. In: Cramton et al. [17] (2006)Google Scholar
  4. Ausubel, L.M., Milgrom, P.: The Lovely but Lonely Vickrey Auction, pp. 17–40. In: Cramton et al. [17] (2006)Google Scholar
  5. Ball, M., Donohue, G.L., Hoffman, K.: Auctions for the Safe, Efficient and Equitable Allocation of Airspace System Resources, pp. 507–538. In: Cramton et al. [17] (2006)Google Scholar
  6. Bichler, M., Davenport, A., Hohner, G., Kalagnanam, J.: Industrial Procurement Auctions, pp. 593–612. In: Cramton et al. [17] (2006)Google Scholar
  7. Bichler, M., Pikovsky, A., Setzer, T.: Kombinatorische Auktionen in der betrieblichen Beschaffung –Eine Analyse grundlegender Entwurfsprobleme. Wirtschaftsinformatik 47(2), 126–134 (2005)Google Scholar
  8. Bichler, M., Shabalin, P., Ziegler, G.: Efficiency with linear prices? A game-theoretical and computational analysis of the combinatorial clock auction. Information Systems Research 24(2), 394–417 (2013)Google Scholar
  9. Borndörfer, R., Grötschel, M., Lukac, S., Mitusch, K., Schlechte, T., Schultz, S., Tanner, A.: An auctioning approach to railway slot allocation. Competition and Regulation in Network Industries 7(2), 163–197 (2006)Google Scholar
  10. Borndörfer, R., Mura, A., Schlechte, T.: Vickrey auctions for railway tracks. In: B. Fleischmann, K.H. Borgwardt, R. Klein, A. Tuma (eds.) Operations Research Proceedings 2008, pp. 551–556. Springer Berlin Heidelberg (2009)Google Scholar
  11. Briskorn, D., Jørnsten, K., Nossack, J.: Pricing combinatorial auctions by a set of linear price vectors. OR Spectrum 38(4), 1043–1070 (2016a)Google Scholar
  12. Briskorn, D., Jørnsten, K., Zeise, P.: A pricing scheme for combinatorial auctions based on bundle sizes. Computers & Operations Research 70, 9–17 (2016b)Google Scholar
  13. Cantillon, E., Pesendorfer, M.: Auctioning Bus Routes: The London Experience, pp. 573–592. In: Cramton et al. [17] (2006)Google Scholar
  14. Caplice, C., Sheffi, Y.: Combinatorial Auctions for Truckload Transportation, pp. 539–572. In: Cramton et al. [17] (2006)Google Scholar
  15. Cramton, P.: Simultaneous Ascending Auctions, pp. 99–114. In: Cramton et al. [17] (2006)Google Scholar
  16. Cramton, P., Ausubel, L.M.: Demand reduction and inefficiency in multi-unit auctions. Working paper, University of Maryland (2002). URL http://works.bepress.com/cramton/49
  17. Cramton, P., Shoham, Y., Steinberg, R. (eds.): Combinatorial Auctions. MIT Press, Cambridge (2006)Google Scholar
  18. Dang, V.D., Jennings, N.R.: Optimal clearing algorithms for multi-unit single-item and multi-unit combinatorial auctions with demand/supply function bidding. In: Proceedings of the 5th International Conference on Electronic Commerce, ICEC ’03, pp. 25–30. ACM, New York, NY, USA (2003)Google Scholar
  19. de Vries, S., Vohra, R.V.: Combinatorial auctions: A survey. INFORMS Journal on Computing 15(3), 284–309 (2003)Google Scholar
  20. Elmaghraby, W., Keskinocak, P.: Combinatorial auctions in procurement. In: T.P. Harrison, H.L. Lee, J.J. Neale (eds.) The Practice of Supply Chain Management: Where Theory and Application Converge. Springer, Berlin (2005)Google Scholar
  21. Engelbrecht-Wiggans, R., Kahn, C.M.: Multi-unit auctions with uniform prices. Economic Theory 12(2), 227–258 (1998)Google Scholar
  22. Engelbrecht-Wiggans, R., Kahn, C.M.: Multi-unit pay-your-bid auctions with variable awards. Games and Economic Behavior 23(1), 25–42 (1998)Google Scholar
  23. Krishna, V.: Auction Theory, 2 edn. Academic Press (2009)Google Scholar
  24. Ledyard, J.O., Olson, M., Porter, D., Swanson, J.A., Torma, D.P.: The first use of a combined-value auction for transportation services. Interfaces 32(5), 4–12 (2002)Google Scholar
  25. Markakis, E., Telelis, O.: Uniform price auctions: Equilibria and efficiency. In: M. Serna (ed.) Algorithmic Game Theory, Lecture Notes in Computer Science, pp. 227–238. Springer Berlin Heidelberg (2012)Google Scholar
  26. Martínez-Pardina, I., Romeu, A.: The case for multi-unit single-run descending-price auctions. Economics Letters 113(3), 310–313 (2011)Google Scholar
  27. Milgrom, P.: Putting auction theory to work: The simultaneous ascending auction. Journal of Political Economy 108(2), 245–272 (2000)Google Scholar
  28. Milgrom, P.: Package auctions and exchanges. Econometrica 75(4), 935–965 (2003)Google Scholar
  29. Parkes, D.: ibundle: An efficient ascending price bundle auction. In: ACM Conference on Electronic Commerce, pp. 148–157 (1999)Google Scholar
  30. Parkes, D.C.: Iterative Combinatorial Auctions, pp. 41–78. In: Cramton et al. [17] (2006)Google Scholar
  31. Parkes, D.C., Ungar, L.H.: Iterative combinatorial auctions: Theory and practice. In: Proceedings of the Seventeenth National Conference on Artificial Intelligence and Twelfth Conference on Innovative Applications of Artificial Intelligence, pp. 74–81 (2000)Google Scholar
  32. Pekeč, A., Rothkopf, M.H.: Combinatorial auction design. Management Science 49(11), 1485–1503 (2003)Google Scholar
  33. Perennes, P.: Use of combinatorial auctions in the railroad industry: Can the „invisible hand“ draw the railroad timetable? Working Paper (2012). URL http://crninet.com/2012/C9d-1.pdf
  34. Porter, D., Rassenti, S., Roopnarine, A., Smith, V.: Combinatorial auction design. Proceedings of the National Academy of Sciences 100(19), 11,153–11,157 (2003)Google Scholar
  35. Porter, D.P.: The effect of bid withdrawal in a multi-object auction. Review of Economic Design 4(1), 73–97 (1999)Google Scholar
  36. Rassenti, S.J., Smith, V.L., Bulfin, R.L.: A combinatorial auction mechanism for airport time slot allocation. The Bell Journal of Economics 13, 402–417 (1982)Google Scholar
  37. Rothkopf, M.H.: Thirteen reasons why the vickrey-clarke-groves process is not practical. Operations Research 55(2), 191–197 (2007)Google Scholar
  38. Sandholm, T., Suri, S.: Market clearability. In: In Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence, pp. 1145–1151 (2001)Google Scholar
  39. Schwind, M., Gujo, O., Vykoukal, J.: A combinatorial intra-enterprise exchange for logistics services. Information Systems and e-Business Management 7(4), 447–471 (2009)Google Scholar
  40. Stickel, M.: Effiziente, operative Torbelegung mittels kombinatorischer Auktionen. Logistics Journal : Nicht-referierte Veröffentlichungen (2008). http://10.2195/LJ_Not_Ref_Stickel_032008
  41. Strandenes, S.P.: Port pricing structures and ship efficiency. Review of Network Economics 3(2), 135–144 (2004)Google Scholar
  42. Strandenes, S.P., Wolfstetter, E.: Efficient (re-)scheduling: An auction approach. Economics Letters 89(2), 187–192 (2005)Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Schumpeter School of Business and EconomicsBergische Universität WuppertalWuppertalDeutschland

Personalised recommendations