Advertisement

Genetik in der Reproduktionsmedizin

  • G. Gillessen-KaesbachEmail author
  • Y. Hellenbroich
Chapter
Part of the Springer Reference Medizin book series (SRM)

Zusammenfassung

Störungen der Fertilität haben bei Frauen und Männern häufig hereditäre Ursachen. Das Spektrum möglicher genetischer Veränderungen ist dabei weit. Es reicht von Chromosomenaberrationen, die in klassischen zytogenetischen Untersuchungen erkannt werden können, über Mikrodeletionen hin zu verschiedenen monogenen Erkrankungen. Fertilitätsstörungen können ferner auch als Teilsymptom bei vielen übergeordneten syndromalen Krankheitsbildern auftreten.

Literatur

  1. Bertelsmann H, de Carvalho GH, Mund M, Bauer S, Matthias K (2008) Das Fehlbildungsrisiko bei extrakorporaler Befruchtung. Dtsch Ärztebl 105(1–2):11–17Google Scholar
  2. Bonduelle M, Libaers I, Deketelaere V, Derde MP, Camus M, Devroey P, van Steirteghem A (2002) Neonatal data on a cohort of 2889 infants born after ICSI (1991–1999) and of 2995 infants born after IVF (1983–1999). Hum Reprod 17:671–694PubMedCrossRefGoogle Scholar
  3. Bonduelle M, Wennerholm UB, Loft A, Tarlatzis BC, Peters C, Henriet S, Mau C, Victorin-Cederquist A, Van Steirteghem A, Balaska A, Emberson JR, Sutcliffe AG (2005) A multi-centre cohort study of the physical health of 5-year-old children conceived after intracytoplasmic sperm injection, in vitro fertilization and natural conception. Hum Reprod 20:413–419PubMedCrossRefPubMedCentralGoogle Scholar
  4. Chang AS, Moley KH, Wangler M, Feinberg AP, de Baun MR (2005) Association between Beckwith-Wiedemann syndrome and assisted reproductive technology: a case series of 19 patients. Fertil Steril 83:349–354PubMedPubMedCentralCrossRefGoogle Scholar
  5. Claustres M, Guittard C, Bozon D, Chevalier F, Verlingue C, Ferec C, Girodon E, Cazeneuve C, Bienvenu T, Lalau G, Dumur V, Feldmann D, Bieth E, Blayau M, Clavel C, Creveaux I, Malinge MC, Monnier N, Malzac P, Mittre H, Chomel JC, Bonnefont JP, Iron A, Chery M, Georges MD (2000) Spectrum of CFTR mutations in cystic fibrosis and in congenital absence of the vas deferens in France. Hum Mutat 16:143–156PubMedCrossRefGoogle Scholar
  6. Cox GF, Bürger J, Lip V, Mau UA, Sperling K, Wu BL, Horsthemke B (2002) Intracytoplasmatic sperm injection may increase the risk of imprinting defects. Am J Hum Genet 71:162–164PubMedPubMedCentralCrossRefGoogle Scholar
  7. Davenport ML (2010) Approach to the patient with Turner syndrome. J Clin Endocrinol Metab 95:1487–1495PubMedCrossRefGoogle Scholar
  8. DeBaun MR, Niemitz EL, Feinberg AP (2003) Association of in vitro fertilization with Beckwith-Wiedemann syndrome and epigenetic alterations of LIT1 and H19. Am J Hum Genet 72:156–160PubMedCrossRefGoogle Scholar
  9. Dequeker E, Stuhrmann M, Morris MA, Casals T, Castellani C, Claustres M, Cuppens H, Des GM, Ferec C, Macek M, Pignatti PF, Scheffer H, Schwartz M, Witt M, Schwarz M, Girodon E (2009) Best practice guidelines for molecular genetic diagnosis of cystic fibrosis and CFTR-related disorders – updated European recommendations. Eur J Hum Genet 17:51–65PubMedCrossRefPubMedCentralGoogle Scholar
  10. Disteche CM (2002) Y chromosome infertility GeneReviews [Internet]. University of Washington, SeattleGoogle Scholar
  11. Doherty AS, Mann MR, Trembley KD, Bartolomei KD, Schultz RM (2000) Differential effects of culture on imprinted H19 expression in the preimplantation mouse embryo. Biol Reprod 62:1526–1536PubMedCrossRefPubMedCentralGoogle Scholar
  12. El-Maarri O, Buiting K, Peery EG, Kroisl PM, Balaban B, Wagner K, Urmann B, Brannan CI, Walter J, Horsthemke B (2001) Maternal methylation imprints on human chromosome 15 are established around or after fertilization. Nat Genet 27:341–344PubMedCrossRefPubMedCentralGoogle Scholar
  13. Ferlin A, Arredi B, Foresta C (2006) Genetic causes of male infertility. Reprod Toxicol 22:133–141PubMedCrossRefPubMedCentralGoogle Scholar
  14. Foresta C, Ferlin A, Gianaroli L, Dallapiccola B (2002) Guidelines for the appropriate use of genetic tests in infertile couples. Eur J Hum Genet 10:303–312PubMedCrossRefPubMedCentralGoogle Scholar
  15. Friso S, Choi SW, Girelli D, Mason JB, Dolnikowski GG, Bagley PJ, Olivieri O, Jacques PF, Rosenberg IH, Corrocher R, Selhub J (2002) A common mutation in the 5,10-methylenetetrahydrofolate reductase gene affects genomic DNA methylation through an interaction with folate status. Proc Natl Acad Sci U S A 99(8):5606–5611CrossRefGoogle Scholar
  16. Gicquel C, Gaston V, Mandelbaum J, Siffroi JP, Flahault A, Le Bouc Y (2003) In vitro fertilization may increase the risk of Beckwith-Wiedemann syndrome related to the abnormal imprinting of the KCN1OT gene. Am J Hum Genet 72:1338–1341PubMedPubMedCentralCrossRefGoogle Scholar
  17. Halliday J, Oke K, Breheny S, Algar E, Amor DJ (2004) Beckwith-Wiedemann syndrome and IVF: a case control study. Am J Hum Genet 75:526–528PubMedPubMedCentralCrossRefGoogle Scholar
  18. Hansen M, Kurinczuk JJ, Bower C, Webb S (2002) The risk of major birth defects after intracytoplasmatic sperm injection and in in vitro fertilization. N Engl J Med 346:725–730PubMedCrossRefPubMedCentralGoogle Scholar
  19. Hansen M, Bower C, Milne E, de Klerk N, Kurinczuk JJ (2005) Assisted reproductivetechnologies and the risk of birth defects – a systematic review. Hum Reprod 20:328–338PubMedCrossRefPubMedCentralGoogle Scholar
  20. Hassold T, Hall H, Hunt P (2007) The origin of human aneuploidy: where we have been, where we are going? Hum Mol Genet 16(Spec No. 2):R203–R208PubMedCrossRefPubMedCentralGoogle Scholar
  21. Ideraabdullah FY, Vigneau S, Bartolomei MS (2008) Genomic imprinting mechanisms in mammals. Mutat Res 647:77–85PubMedPubMedCentralCrossRefGoogle Scholar
  22. Jacobs P, Dalton P, James R, Mosse K, Power M, Robinson D, Skuse D (1997) Turner syndrome: a cytogenetic and molecular study. Ann Hum Genet 61:471–483PubMedCrossRefPubMedCentralGoogle Scholar
  23. Katalinic A, Rösch C, Ludwig M, German ICSI Follow-up Study Group (2004) Pregnancy course and outcome after intracytoplasmatic sperm injection: a controlled, prospective cohort study. Fertil Steril 81:1604–1616PubMedCrossRefPubMedCentralGoogle Scholar
  24. Kobayashi H, Hiura H, John RM, Sato A, Otsu E, Kobayashi N, Suzuki R, Suzuki F, Hayashi C, Utsunomiya T, Yaegashi N, Arima T (2009) DNA methylation studies at imprinted loci after assisted conception in parental sperm. Eur J Hum Genet 17:1582–1591PubMedPubMedCentralCrossRefGoogle Scholar
  25. Ledbetter DH, Ricardi VM, Airhart SD, Strobel RJ, Keenan BS, Crwford JD (1981) Deletions of chromosome 15 as a cause of Prader-Willi syndrome. N Engl J Med:325–329PubMedCrossRefPubMedCentralGoogle Scholar
  26. Lie RT, Lyngstadaas A, Orstavik KH, Bakketeig LS, Jacobsen G, Tanbo T (2005) Birth defects in children conceived by ICSI compared withchildren conceived by other IVF-methods; a meta-analysis. Int J Epidemiol 34:696–701PubMedCrossRefPubMedCentralGoogle Scholar
  27. Ludwig M, Katalinic A (2002) Malformations rate in fetuses and children conceived after ICSI: results of a prospective cohort study. Reprod Biomed Online 5:171–178PubMedCrossRefPubMedCentralGoogle Scholar
  28. Ludwig M, Gromoll J, Hehr U, Wieacker P (2004) Stellungnahme der Arbeitsgemeinschaft Reproduktionsgenetik der Deutschen Gesellschaft für Reproduktionsmedizin: Empfehlungen zur genetischen Diagnostik bei Kinderwunschpaaren. J Reproduktionsmed Endokrinol 1:190–193Google Scholar
  29. Ludwig M, Katalinic A, Groß S, Sutcliffe A, Varon R, Horsthemke B (2005) Increased prevalence of imprinting defects in patients with Angelman syndrome. J Med Genet 42:289–291PubMedPubMedCentralCrossRefGoogle Scholar
  30. Magenis RE, Brown MG, Lacy DA, Budden S, LaFranchi S (1987) Is Angelman syndrome an alternate result of del (15) (q11–q13)? Am J Med Genet 28:829–838Google Scholar
  31. Maher ER, Brueton LA, Browdin SC, Luharia A, Cooper W, Cole TR, Macdonald F, Sampson JR, Barratt CL, Reik W, Hawkins MM (2003) Beckwith-Wiedemann syndrome and assisted reproduction technology (ART). J Med Genet 40:62–64PubMedPubMedCentralGoogle Scholar
  32. Malcolm S, Clayton-Smith J, Nichols M, Robb S, Webb T, Armour JA, Jeffreys AJ, Pembrey ME (1991) Uniparental disomy in Angelman’s syndrome. Lancet 337:694–697PubMedCrossRefPubMedCentralGoogle Scholar
  33. Market-Velker BA, Zhang L, Magri LS, Bonvissuto AC, Mann MR (2010) Dual effects of superovulation: Loss of paternal and maternal imprinted methylation in a dose dependant manner. Hum Mol Genet 1:936–951Google Scholar
  34. McLachlan RI, O’Bryan MK (2010) State of the art for genetic testing of infertile men. J Clin Endocrinol Metab 95:1013–1024PubMedCrossRefPubMedCentralGoogle Scholar
  35. Meschede D, Froster UG, Bergmann M, Nieschlag E (1994) Familial pericentric inversion of chromosome 1 (p34q23) and male infertility with stage specific spermatogenic arrest. J Med Genet 31:573–575PubMedPubMedCentralCrossRefGoogle Scholar
  36. Modi DN, Sane S, Bhartiya D (2003) Accelerated germ cell apoptosis in sex chromosome aneuploid fetal human gonads. Mol Hum Reprod 9:219–225PubMedCrossRefGoogle Scholar
  37. Moll AC, Imhoff SM, Cruysberg JRM, Schouten-van-Meeteren AYN, Boers M, van Leuwen FE (2003) Incidence of retinoblastoma in children born after in-viro-fertilization. Lancet 99(8):5606–5611Google Scholar
  38. Nicholls RD, Knoll JH, Butler MG, Karam S, Lalande M (1989) Genetic imprinting suggested by maternal heterodisomy in non-deletion Prader-Willi syndrome. Nature 342:281–285PubMedPubMedCentralCrossRefGoogle Scholar
  39. Ong T, Marshall SG, Karczeski BA et al (2017) Cystic fibrosis and congenital absence of the vas deferens. 2001 Mar 26 [Updated 2017 Feb 2]. In: Adam MP, Ardinger HH, Pagon RA et al (Hrsg) GeneReviews® [Internet]. University of Washington, Seattle, Seattle; 1993–2017Google Scholar
  40. Orstavik KH, Eiklid K, van der Hagen CB, Spetalen S, Lierulf K, Skeldal O, Buiting K (2003) Another case of imprinting defect in a girl with Angelman syndrome who was conceived by intracytoplasmatic semen injection. Am J Hum Genet 72:218–219PubMedPubMedCentralCrossRefGoogle Scholar
  41. Pliushch G, Schneider E, Weise D, El Hajj N, Tresch A, Seidmann L, Coerdt W, Müller AM, Zechner U, Haaf T (2010) Extreme methylation values of imprinted genes in human abortions and stillbirths. Am J Pathol 176:1084–1090PubMedPubMedCentralCrossRefGoogle Scholar
  42. Radpour R, Gourabi H, Dizaj AV, Holzgreve W, Zhong XY (2008) Genetic investigations of CFTR mutations in congenital absence of vas deferens, uterus, and vagina as a cause of infertility. J Androl 29:506–513PubMedCrossRefPubMedCentralGoogle Scholar
  43. Reik W, Dean W, Walter J (2001) Epigenetic reprogramming in mammalian development. Science 293:1089–2003PubMedCrossRefPubMedCentralGoogle Scholar
  44. Repping S, Skaletsky H, Lange J, Silber S, Van der Veen V, Oates RD, Page DC, Rozen S (2002) Recombination between palindromes P5 and P1 on the human Y chromosome causes massive deletions and spermatogenic failure. Am J Hum Genet 71:906–922PubMedPubMedCentralCrossRefGoogle Scholar
  45. Rimm AA, Katayama AC, Diaz M, Katayama KP (2004) A meta-analysis of controlled studies comparing major malformation rates in IVF and ICSI infants with naturally conceived children. J Assist Reprod Genet 21:437–443PubMedPubMedCentralCrossRefGoogle Scholar
  46. Schiff JD, Palermo GD, Veeck LL, Goldstein M, Rosenwaks Z, Schlegel PN (2005) Success of testicular sperm extraction [corrected] and intracytoplasmic sperm injection in men with Klinefelter syndrome. J Clin Endocrinol Metab 90:6263–6267PubMedCrossRefPubMedCentralGoogle Scholar
  47. Shah K, Sivapalan G, Gibbons N, Tempest H, Griffin DK (2003) The genetic basis of infertility. Reproduction 126:13–25PubMedCrossRefPubMedCentralGoogle Scholar
  48. Sierra S, Stephenson M (2006) Genetics of recurrent pregnancy loss. Sem Reprod Med 24:17–24CrossRefGoogle Scholar
  49. Silber SJ, Disteche CM (2012) Y chromosome infertility. 2002 Oct 31 [Updated 2012 Oct 18]. In: Adam MP, Ardinger HH, Pagon RA et al (Hrsg) GeneReviews® [Internet]. University of Washington, Seattle, Seattle; 1993–2017Google Scholar
  50. Soini S, Ibarreta D, Anastasiadou V, Ayme S, Braga S, Cornel M, Coviello DA, Evers-Kiebooms G, Geraedts J, Gianaroli L, Harper J, Kosztolanyi G, Lundin K, Rodrigues-Cerezo E, Sermon K, Sequeiros J, Tranebjaerg L, Kaariainen H (2006) The interface between assisted reproductive technologies and genetics: technical, social, ethical and legal issues. Eur J Hum Genet 14:588–645PubMedCrossRefPubMedCentralGoogle Scholar
  51. Tierling S, Souren NY, Gries J, Loporto C, Groth M, Lutsik P, Neitzel H, Utz-Billing I, Gillessen-Kaesbach G, Kentenich H, Griesinger G, Sperling K, Schwinger E, Walter J (2010) Assisted reproductive technologies do not enhance the variability of DANN methylation of DNA methylation imprints in human. J Med Genet 47:371–376PubMedCrossRefPubMedCentralGoogle Scholar
  52. Walsh TJ, Pera RR, Turek PJ (2009) The genetics of male infertility. Semin Reprod Med 27:124–136PubMedCrossRefPubMedCentralGoogle Scholar
  53. Wikstrom AM, Dunkel L (2011) Klinefelter syndrome. Best Pract Res Clin Endocrinol Metab 25:239–250PubMedCrossRefPubMedCentralGoogle Scholar
  54. Young LE, Fernandes K, McEvoy TG, Butterwith SC, Gutierrez CG, Carolan C, Broadbent PJ, Robinson JJ, Wilmut I, Sinclair KD (2001) Epigenetic change in IGF2R is associated with fetal overgrowth after sheep embryo culture. Nat Genet 27:153–154PubMedCrossRefPubMedCentralGoogle Scholar
  55. Zechner U, Pliushch G, Schneider E, El Hajj N, Tresch A, Shufaro Y, Seidmann L, Coerdt W, Müller AM, Haaf T (2010) Quantitative methylation analysis of developmental important genes un human pregnancy losses after ART and spontaneous conception. Mol Hum Reprod 16:704–713PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2020

Authors and Affiliations

  1. 1.Institut für HumangenetikUniversitätsklinikum Schleswig-Holstein, Campus LübeckLübeckDeutschland

Personalised recommendations