Erdős–Szekeres Theorems for Families of Convex Sets

  • Andreas F. Holmsen
Part of the Bolyai Society Mathematical Studies book series (BSMS, volume 27)


The well-known Erdős–Szekeres theorem states that every sufficiently large set of points in the plane containing no three points on a line, has a large subset in convex position. This classical result has been generalized in several directions. In this article we review recent progress related to one such direction, initiated by Bisztriczky and Fejes Tóth, in which the points are replaced by convex sets.


  1. 1.
    I. Bárány, G. Károlyi, Problems and results around the Erdős–Szekeres convex polygon theorem, in Discrete and computational geometry (Tokyo, 2000), Lecture Notes in Comput. Sci. (Springer, Berlin, 2001), pp. 91–105CrossRefGoogle Scholar
  2. 2.
    I. Bárány, P. Valtr, A positive fraction Erdős-Szekeres theorem. Discret. Comput. Geom. 19, 335–342 (1998)CrossRefGoogle Scholar
  3. 3.
    T. Bisztriczky, G. Fejes, Tóth, A generalization of the Erdős-Szekeres convex \(n\)-gon theorem. J. Reine Angew. Math. 395, 167–170 (1989)Google Scholar
  4. 4.
    T. Bisztriczky, G. Fejes, Tóth, Nine convex sets determine a pentagon with convex sets as vertices. Geom. Dedicata 31, 89–104 (1989)MathSciNetCrossRefGoogle Scholar
  5. 5.
    T. Bisztriczky, G. Fejes Tóth, Convexly independent sets. Combinatorica 10, 195–202 (1990)MathSciNetCrossRefGoogle Scholar
  6. 6.
    A. Björner, M.L. Vergnas, B. Sturmfels, N. White, G.M. Ziegler, Oriented Matroids, 2nd edn., Encyclopedia of Mathematics and its Applications (Cambridge University Press, Cambridge, 1999)Google Scholar
  7. 7.
    F.R.K. Chung, R.L. Graham, Forced convex \(n\)-gons in the plane. Discret. Comput. Geom. 19, 367–371 (1998)Google Scholar
  8. 8.
    M.G. Dobbins, A.F. Holmsen, A. Hubard, The Erdős-Szekeres problem for non-crossing convex sets. Mathematika 60, 463–484 (2014)MathSciNetCrossRefGoogle Scholar
  9. 9.
    M.G. Dobbins, A.F. Holmsen, A. Hubard, Regular systems of paths and families of convex sets in convex position. Trans. Am. Math. Soc. 368, 3271–3303 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    M. Eliáš, J. Matoušek, Higher-order Erdős-Szekeres theorems. Adv. Math. 244, 1–15 (2013)MathSciNetCrossRefGoogle Scholar
  11. 11.
    P. Erdős, G. Szekeres, A combinatorial problem in geometry. Compositio Math. 2, 463–470 (1935)MathSciNetzbMATHGoogle Scholar
  12. 12.
    P. Erdős, G. Szekeres, On some extremum problems in elementary geometry. Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 3–4, 53–62 (1960/1961)Google Scholar
  13. 13.
    S. Felsner, P. Valtr, Coding and counting arrangements of pseudolines. Discret. Comput. Geom. 46, 405–416 (2011)MathSciNetCrossRefGoogle Scholar
  14. 14.
    J. Fox, J. Pach, B. Sudakov, A. Suk, Erdős-Szekeres-type theorems for monotone paths and convex bodies. Proc. Lond. Math. Soc. 105, 953–982 (2012)MathSciNetCrossRefGoogle Scholar
  15. 15.
    J.E. Goodman, Pseudoline arrangements, in Handbook of Discrete and Computational Geometry, 2nd edn. (CRC Press Ser. Discrete Math. Appl., FL, 2004), pp. 97–128CrossRefGoogle Scholar
  16. 16.
    J.E. Goodman, R. Pollack, On the combinatorial classification of nondegenerate configurations in the plane. J. Comb. Theory Ser. A 29, 220–235 (1980)MathSciNetCrossRefGoogle Scholar
  17. 17.
    J.E. Goodman, R. Pollack, A combinatorial perspective on some problems in geometry, Proceedings of the Twelfth Southeastern Conference on Combinatorics, Graph Theory and Computing, Vol. I (Baton Rouge, La., 1981),vol. 32 (1981), pp. 383–394Google Scholar
  18. 18.
    J.E. Goodman, R. Pollack, Upper bounds for configurations and polytopes in \({ R}^d\). Discret. Comput. Geom. 1, 219–227 (1986)Google Scholar
  19. 19.
    A. Hubard, L. Montejano, E. Mora, A. Suk, Order types of convex bodies. Order 28, 121–130 (2011)MathSciNetCrossRefGoogle Scholar
  20. 20.
    D.J. Kleitman, L. Pachter, Finding convex sets among points in the plane. Discret. Comput. Geom. 19, 405–410 (1998)MathSciNetCrossRefGoogle Scholar
  21. 21.
    D.E. Knuth, Axioms and Hulls, Lecture Notes in Computer Science (Springer, Berlin, 1992)CrossRefGoogle Scholar
  22. 22.
    M. Lewin, A new proof of the Erdős-Szekeres theorem. Math. Gaz. 60, 136–138 (1976)Google Scholar
  23. 23.
    P.A. MacMahon, Combinatorial Analysis, Two volumes (bound as one) (Chelsea Publishing Co., New York, 1960)Google Scholar
  24. 24.
    H.N. Mojarrad, On the Erdős–Szekeres Conjecture (2015). arXiv:1510.06255
  25. 25.
    H.N. Mojarrad, G. Vlachos, An improved upper bound for the Erdős-Szekeres Conjecture. Discret. Comput. Geom. 56, 165–180 (2016)MathSciNetCrossRefGoogle Scholar
  26. 26.
    W. Morris, V. Soltan, The Erdős-Szekeres problem on points in convex position–a survey. Bull. Am. Math. Soc. 37, 437–458 (2000)Google Scholar
  27. 27.
    G. Moshkovitz, A. Shapira, Ramsey Theory, integer partitions and a new proof of the Erdős-Szekeres Theorem. Adv. Math. 262, 1107–1129 (2014)MathSciNetCrossRefGoogle Scholar
  28. 28.
    S. Norin, Y. Yuditsky, Erdős-Szekeres without induction. Discret. Comput. Geom. 55, 963–971 (2016)MathSciNetCrossRefGoogle Scholar
  29. 29.
    J. Pach, J. Solymosi, Canonical theorems for convex sets. Discret. Comput. Geom. 19, 427–435 (1998)MathSciNetCrossRefGoogle Scholar
  30. 30.
    J. Pach, G. Tóth, A generalization of the Erdős-Szekeres theorem to disjoint convex sets. Discret. Comput. Geom. 19, 437–445 (1998)CrossRefGoogle Scholar
  31. 31.
    J. Pach, G. Tóth, Erdős-Szekeres-type theorems for segments and noncrossing convex sets. Geom. Dedicata 81, 1–12 (2000)MathSciNetCrossRefGoogle Scholar
  32. 32.
    A. Pór, P. Valtr, The partitioned version of the Erdős-Szekeres theorem. Discret. Comput. Geom. 28, 625–637 (2002)MathSciNetCrossRefGoogle Scholar
  33. 33.
    A. Pór, P. Valtr, On the positive fraction Erdős-Szekeres theorem for convex sets. Eur. J. Comb. 27, 1199–1205 (2006)MathSciNetCrossRefGoogle Scholar
  34. 34.
    A. Suk, On the Erdős–Szekeres convex polygon problem. J. Am. Math. Soc. 30, 1047–1053 (2017). arXiv:1604.08657CrossRefGoogle Scholar
  35. 35.
    G. Szekeres, L. Peters, Computer solution to the 17-point Erdős-Szekeres problem. ANZIAM J. 48, 151–164 (2006)MathSciNetCrossRefGoogle Scholar
  36. 36.
    G. Tóth, Finding convex sets in convex position. Combinatorica 20, 589–596 (2000)MathSciNetCrossRefGoogle Scholar
  37. 37.
    G. Tóth, P. Valtr, Note on the Erdős-Szekeres theorem. Discret. Comput. Geom. 19, 457–459 (1998)CrossRefGoogle Scholar
  38. 38.
    G. Tóth, P. Valtr, The Erdős-Szekeres theorem: upper bounds and related results, Combinatorial and Computational Geometry, vol. 52 (Cambridge Univ. Press, Cambridge, 2005), pp. 557–568Google Scholar
  39. 39.
    G. Vlachos, On a conjecture of Erdős and Szekeres (2015). arXiv:1505.07549

Copyright information

© János Bolyai Mathematical Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematical SciencesKAIST DaejeonDaejeonSouth Korea

Personalised recommendations