Advertisement

Two Geometrical Applications of the Semi-random Method

  • Péter HajnalEmail author
  • Endre Szemerédi
Chapter
Part of the Bolyai Society Mathematical Studies book series (BSMS, volume 27)

Abstract

The semi-random method was introduced in the early eighties. In its first form of the method lower bounds were given for the size of the largest independent set in hypergraphs with certain uncrowdedness properties. The first geometrical application was a major achievement in the history of Heilbronn’s triangle problem. It proved that the original conjecture of Heilbronn was false. The semi-random method was extended and applied to other problems. In this paper we give two further geometrical applications of it. First, we give a slight improvement on Payne and Wood’s upper bounds on a Ramsey-type parameter, introduced by Gowers. We prove that any planar point set of size \(\Omega \left( \frac{n^2\log n}{\log \log n}\right) \) contains n points on a line or n independent points. Second, we give a slight improvement on Schmidt’s bound on Heilbronn’s quadrangle problem. We prove that there exists a point set of size n in the unit square that doesn’t contain four points with convex hull of area \(\mathcal {O}(n^{-3/2}(\log n)^{1/2})\).

References

  1. 1.
    M. Ajtai, J. Komlós, E. Szemerédi, A dense infinite Sidon sequence. Eur. J. Comb. 2(1), 1–11 (1981)MathSciNetCrossRefGoogle Scholar
  2. 2.
    M. Ajtai, J. Komlós, J. Pintz, J. Spencer, E. Szemerédi, Extremal uncrowded hypergraphs. J. Comb. Theory Ser. A 32(3), 321–335 (1982)MathSciNetCrossRefGoogle Scholar
  3. 3.
    C. Bertram-Kretzberg, T. Hofmeister, H. Lefmann, An algorithm for Heilbronn’s problem. SIAM J. Comput. 30(2), 383–390 (2000)MathSciNetCrossRefGoogle Scholar
  4. 4.
    R. Duke, H. Lefmann, V. Rödl, On uncrowded hypergraphs. Random Struct. Algorithms 6(2–3), 209–212 (1995)MathSciNetCrossRefGoogle Scholar
  5. 5.
    T. Gowers, A Geometric Ramsey Problem, http://mathoverflow.net/questions/50928/a-geometric-ramsey-problem. Accessed May 2016
  6. 6.
    S. Jukna, Extremal Combinatorics, With Applications in Computer Science, 2nd edn., Texts in Theoretical Computer Science (Springer, Heidelberg, 2011)CrossRefGoogle Scholar
  7. 7.
    J. Komlós, J. Pintz, E. Szemerédi, A lower bound for Heilbronn’s problem. J. Lond. Math. Soc 25(2)(1), 13–24 (1982)MathSciNetCrossRefGoogle Scholar
  8. 8.
    J. Komlós, J. Pintz, E. Szemerédi, On Heilbronn’s triangle problem. J. Lond. Math. Soc. 24(2)(2), 385–396 (1981)MathSciNetCrossRefGoogle Scholar
  9. 9.
    M.S. Payne, D.R. Wood, On the general position subset selection problem. SIAM J. Discret. Math. 27(4), 1727–1733 (2013)MathSciNetCrossRefGoogle Scholar
  10. 10.
    K.F. Roth, Estimation of the area of the smallest triangle obtained by selecting three out of \(n\) points in a disc of unit area, in Analytic Number Theory (Proc. Sympos. Pure Math., Vol. XXIV, St. Louis Univ., St. Louis, Mo., 1972) (Amer. Math. Soc, Providence, 1973), pp. 251–262Google Scholar
  11. 11.
    K.F. Roth, On a problem of Heilbronn. J. Lond. Math. Soc. 26, 198–204 (1951)MathSciNetCrossRefGoogle Scholar
  12. 12.
    K.F. Roth, On a problem of Heilbronn II. Proc. Lond. Math. Soc. 25(3), 193–212 (1972)MathSciNetCrossRefGoogle Scholar
  13. 13.
    K.F. Roth, On a problem of Heilbronn III. Proc. Lond. Math. Soc. 25(3), 543–549 (1972)MathSciNetCrossRefGoogle Scholar
  14. 14.
    K.F. Roth, Developments in Heilbronn’s triangle problem. Adv. Math. 22(3), 364–385 (1976)MathSciNetCrossRefGoogle Scholar
  15. 15.
    W. Schmidt, On a problem of Heilbronn. J. Lond. Math. Soc. 4(2), 545–550 (1971/72)MathSciNetCrossRefGoogle Scholar
  16. 16.
    E. Szemerédi, W. Trotter, Extremal problems in discrete geometry. Combinatorica 3(3–4), 381–392 (1983)MathSciNetCrossRefGoogle Scholar

Copyright information

© János Bolyai Mathematical Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Bolyai InstituteUniversity of SzegedSzegedHungary
  2. 2.Alfréd Rényi Institute of MathematicsHungarian Academy of SciencesBudapestHungary
  3. 3.Department of Computer ScienceRutgers UniversityNJUSA

Personalised recommendations