The Geometry of Abrasion

  • Gábor DomokosEmail author
  • Gary W. Gibbons
Part of the Bolyai Society Mathematical Studies book series (BSMS, volume 27)


Our goal is to narrow the gap between the mathematical theory of abrasion and geological data. To this end, we first review existing mean field geometrical theory for the abrasion of a single particle under collisions and extend it to include mutual abrasion of two particles and also frictional abrasion. Next we review the heuristically simplified box model [8], operating with ordinary differential equations, which also describes mutual abrasion and friction. We extend the box model to include an independent physical equation for the evolution of mass and volume. We introduce volume weight functions as multipliers of the geometric equations and use these multipliers to enforce physical volume evolution in the unified equations. The latter predict, in accordance with Sternberg’s Law, exponential decay for volume evolution so the extended box model appears to be suitable to match and predict field data. The box model is also suitable for tracking the collective abrasion of large particle populations. The mutual abrasion of identical particles, modeled by the self-dual flows, plays a key role in explaining geological scenarios. We give stability criteria for self-dual flows in terms of the parameters of the physical volume evolution models and show that under reasonable assumptions these criteria can be met by physical systems.



This research was supported by NKFI grant 119245. The comments from Dr Timea Szabó and from Prof. Fred Bloore are greatly appreciated.


  1. 1.
    B. Andrews, Guass curvature flow: the fate of rolling stones. Invent. Math. 138, 151–161 (1999)MathSciNetCrossRefGoogle Scholar
  2. 2.
    J.F. Archard, W. Hirst, The wear of metals under unlubricated conditions. Proc. R.Soc. Lond. A 236, 397–416 (1956)CrossRefGoogle Scholar
  3. 3.
    M.T. Batchelora, R.V. Burneb, B.I. Henry, S.D. Watt, Deterministic KPZ model for stromatolite laminae. Phys. A 282, 123–136 (2000)CrossRefGoogle Scholar
  4. 4.
    F.J. Bloore, The shape of pebbles. Math. Geol. 9, 113–122 (1977)MathSciNetCrossRefGoogle Scholar
  5. 5.
    K. Brakke, The Motion of a Surface by its Mean Curvature (Princeton University Press, Princeton, 1978)zbMATHGoogle Scholar
  6. 6.
    B. Chow, On Harnack’s inequailty and entropy for the Gaussian curvature flow. Commun. Pure Appl. Math. XLIV, 469–483 (1991)CrossRefGoogle Scholar
  7. 7.
    J.E. Dobkins, R.J. Folk, Shape developement on Tahiti-Nui. J. Sediment. Petrol. 40, 1167–1203 (1970)Google Scholar
  8. 8.
    G. Domokos, G.W. Gibbons, The evolution of pebble shape in space and time. Proc. R. Soc. Lond. 468(2146), 3059–3079 (2012)MathSciNetCrossRefGoogle Scholar
  9. 9.
    G. Domokos, G.W. Gibbons, Geometrical and physical models of abrasion, arXiv preprint (2013), arXiv:1307.5633
  10. 10.
    G. Domokos, Z. Lángi, T. Szabó, On the equilibria of finely discretized curves and surfaces. Monatsh. Math. 168, 321–345 (2012)MathSciNetCrossRefGoogle Scholar
  11. 11.
    G. Domokos, A. Sipos, P. Várkonyi, Continuous and discrete models for abrasion processes. Period. Polytech. Archit. 40, 3–8 (2009)CrossRefGoogle Scholar
  12. 12.
    G. Domokos, D.J. Jerolmack, A.Á. Sipos, Á. Török, How river rocks round: resolving the shape-size paradox. PloS one 9(2), e88657 (2014). Scholar
  13. 13.
    G. Domokos, A. Sipos, G. Szabó, P. Várkonyi, Formation of sharp edges and plane areas of asteroids by polyhedral abrasion. Astrophys. J. 699, L13–116 (2009)CrossRefGoogle Scholar
  14. 14.
    D.J. Durian et al., What is in a Pebble shape? Phys. Rev. Lett. 97, 028001 (2006). (4 p.)CrossRefGoogle Scholar
  15. 15.
    W.J. Firey, The shape of worn stones. Mathematika 21, 1–11 (1974)MathSciNetCrossRefGoogle Scholar
  16. 16.
    M.A. Grayson, The heat equation shrinks embedded plane curves to round points. J. Differ. Geom. 26, 285–314 (1987)MathSciNetCrossRefGoogle Scholar
  17. 17.
    A.A. Griffith, The phenomena of rupture and flow in solids. Philos. Trans. Roy. Soc. A 221, 163–198 (1921)CrossRefGoogle Scholar
  18. 18.
    R. Hamilton, Three-manifolds with positive Ricci curvature. J. Differ. Geom. 17, 255–306 (1982)MathSciNetCrossRefGoogle Scholar
  19. 19.
    G. Huisken, Flow by mean curvature of convex surfaces into spheres. J. Differ. Geom. 20, 27–266 (1984)MathSciNetCrossRefGoogle Scholar
  20. 20.
    G. Huisken, Asymptotic behavior for singularities of the mean curvature flow. J. Differ. Geom 31, 285–299 (1990)MathSciNetCrossRefGoogle Scholar
  21. 21.
    M. Kardar, G. Parisi, Y.C. Zhang, Phys. Rev. Lett. 56, 889–892 (1986)CrossRefGoogle Scholar
  22. 22.
    J.J. Koenderink, The structure of images. Biol. Cybern. 50, 363–370 (1984)MathSciNetCrossRefGoogle Scholar
  23. 23.
    P.L. Krapivsky, S. Redner, Smoothing rock by chipping. Phys. Rev. E 75(3 Pt 1), 031119 (2006). Scholar
  24. 24.
    P.D. Krynine, On the antiquity of “sedimentation” and hydrology. Bull. Geol. Soc. Am. 71, 1721–1726 (1960)CrossRefGoogle Scholar
  25. 25.
    C. Lu, Y. Cao, D. Mumford, Surface evolution under curvature flows. J. Vis. Commun. Imgae Represent. 13, 65–81 (2002)CrossRefGoogle Scholar
  26. 26.
    A. Maritan, F. Toigo, J. Koplik, J.R. Banavar, Dynamics of growing interfaces. Phys. Rev. Lett. 69, 3193–3195 (1992)CrossRefGoogle Scholar
  27. 27.
    M. Marsilli, A. Maritan, F. Toigo, J.B. Banavar, Stochastic growth equations and reparameterization invariance. Rev. Mod. Phys. 68, 963–983 (1996)CrossRefGoogle Scholar
  28. 28.
    H.R. Palmer, Observations on the motions of Shingle beaches. Philos. Trans. R. Soc. Lond. 124, 567–576 (1834)CrossRefGoogle Scholar
  29. 29.
    G. Perelman, Ricci flow with surgery on three-manifolds (2003), arXiv:math.DG/0303109v1
  30. 30.
    L. Rayleigh, Pebbles, natural and artificial. Their shape under various conditions of abrasion. Proc. R. Soc. Lond. A 181, 107–118 (1942)CrossRefGoogle Scholar
  31. 31.
    L. Rayleigh, Pebbles, natural and artificial. Their shape under various conditions of abrasion. Proc. R. Soc. Lond. A 182, 321–334 (1944)CrossRefGoogle Scholar
  32. 32.
    L. Rayleigh, Pebbles of regular shape and their production in experiment. Nature 154, 161–171 (1944)CrossRefGoogle Scholar
  33. 33.
    F. Rhines, K. Craig, R. Dehoff, Mechanism of steady-state grain growth in aluminium. Metal. Mater. Trans. 5, 413–425 (1974)Google Scholar
  34. 34.
    R.C. Sarracino, G. Prasad, M. Hoohlo, A mathematical model of spheroidal weathering. Math. Geol. 19, 269–289 (1987)CrossRefGoogle Scholar
  35. 35.
    H. Sternberg, Untersuchungen uber Langen-und Querprofil geschiebefuhrender Flusse. Z. Bauwes. 25, 486–506 (1875)Google Scholar
  36. 36.
    T. Szabó, S. Fityus, G. Domokos, Abrasion model of downstream changes in grain shape and size along the Williams River, Australia. J. Geophys. Res. Earth Surf. 118(4), 2059–2071 (2013). Scholar
  37. 37.
    O. Tsoungui, D. Vallet, J.-C. Charmet, S. Roux, Size effects in single grain fragmentation. Granul. Matter 2, 19–27 (1999)CrossRefGoogle Scholar
  38. 38.
    P.L. Várkonyi, G. Domokos, A general model for collision-based abrasion. IMA J. Appl. Math. 76, 47–56 (2011)MathSciNetCrossRefGoogle Scholar
  39. 39.
    W. Weibull, A statistical theory of the strength of materials. R. Swed. Inst. Eng. Res. 151 (1939)Google Scholar
  40. 40.
    K. Winzer, On the formation of elliptic stones due to periodic water waves. Eur. Phys. J. B 86, 464 (2013). Scholar

Copyright information

© János Bolyai Mathematical Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.MTA-BME Morphodynamics Research Group and Dept. of Mechanics, Materials and StructuresBudapest University of TechnologyBudapestHungary
  2. 2.Dept. of Applied Mathematics and Theoretical PhysicsCambridge UniversityCambridgeUK

Personalised recommendations