Advertisement

Five Essays on the Geometry of László Fejes Tóth

  • Oleg R. MusinEmail author
Chapter
Part of the Bolyai Society Mathematical Studies book series (BSMS, volume 27)

Abstract

In this paper we consider the following topics related to results of László Fejes Tóth: (1) The Tammes problem and Fejes Tóth’s bound on circle packings; (2) Fejes Tóth’s problem on maximizing the minimum distance between antipodal pairs of points on the sphere; (3) Fejes Tóth’s problem on the maximum kissing number of packings on the sphere; (4) The Fejes Tóth–Sachs problem on the one-sided kissing numbers; (5) Fejes Tóth’s papers on the isoperimetric problem for polyhedra.

References

  1. 1.
    A. Barg, O.R. Musin, Codes in spherical caps. Adv. Math. Commun. 1, 131–149 (2007)MathSciNetCrossRefGoogle Scholar
  2. 2.
    C. Bachoc, F. Vallentin, Semidefinite programming, multivariate orthogonal polynomials, and codes in spherical caps. Eur. J. Comb. 30, 625–637 (2009)MathSciNetCrossRefGoogle Scholar
  3. 3.
    A. Bezdek, K. Bezdek, A note on the ten-neighbour packing of equal balls. Beiträge zur Alg. und Geom. 27, 49–53 (1988)MathSciNetzbMATHGoogle Scholar
  4. 4.
    K. Bezdek, Sphere packing revisited. Eur. J. Comb. 27, 864–883 (2006)MathSciNetCrossRefGoogle Scholar
  5. 5.
    K. Bezdek, P. Brass, On \(k^+\)-neighbour packings and one-sided Hadwiger configurations. Contrib. Algebra Geom. 4, 493–498 (2003)Google Scholar
  6. 6.
    K. Böröczky, Packing of spheres in spaces of constant curvature. Acta Math. Acad. Sci. Hung. 32, 243–261 (1978)MathSciNetCrossRefGoogle Scholar
  7. 7.
    K. Böröczky, The problem of Tammes for \(n = 11\). Stud. Sci. Math. Hung. 18, 165–171 (1983)Google Scholar
  8. 8.
    K. Böröczky, The Newton-Gregory problem revisited, in Discrete Geometry, ed. by A. Bezdek (Dekker, New York, 2003), pp. 103–110CrossRefGoogle Scholar
  9. 9.
    K. Böröczky, L. Szabó, Arrangements of 13 points on a sphere, in Discrete Geometry, ed. by A. Bezdek (Dekker, New York, 2003), pp. 111–184Google Scholar
  10. 10.
    K. Böröczky, L. Szabó, Arrangements of 14, 15, 16 and 17 points on a sphere. Stud. Sci. Math. Hung. 40, 407–421 (2003)MathSciNetzbMATHGoogle Scholar
  11. 11.
    P. Brass, W.O.J. Moser, J. Pach, Research Problems in Discrete Geometry (Springer, Berlin, 2005)Google Scholar
  12. 12.
    H. Cohn, J. Woo, Three-point bounds for energy minimization. J. Am. Math. Soc. 25, 929–958 (2012)MathSciNetCrossRefGoogle Scholar
  13. 13.
    J.H. Conway, N.J.A. Sloane, Sphere Packings, Lattices, and Groups, 3rd edn. (Springer, New York, 1999)CrossRefGoogle Scholar
  14. 14.
    H.S.M. Coxeter, An upper bound for the number of equal nonoverlapping spheres that can touch another of the same size. Proc. Symp. Pure Math. AMS 7, 53–71 (1963). (\(=\) Chap. 9 of H.S.M. Coxeter, Twelve Geometric Essays, Southern Illinois Press, Carbondale Il, (1968))Google Scholar
  15. 15.
    L. Danzer, Finite point-sets on \({ S}^2\) with minimum distance as large as possible. Discret. Math. 60, 3–66 (1986)Google Scholar
  16. 16.
    A. Deza, M. Deza, V. Grishukhin, Fullerenes and coordination polyhedra versus half-cube embeddings. Discret. Math. 192, 41–80 (1998)MathSciNetCrossRefGoogle Scholar
  17. 17.
    G. Fejes Tóth, Ten-neighbor packing of equal balls. Period. Math. Hung. 12, 125–127 (1981)Google Scholar
  18. 18.
    L. Fejes Tóth, Über die Abschätzung des kürzesten Abstandes zweier Punkte eines auf einer Kugelfläche liegenden Punktsystems. Jber. Deutch. Math. Verein, 53 (1943), 66–68Google Scholar
  19. 19.
    L. Fejes Tóth, Über einige Extremaleigenschaften der regulären Polyeder und des gleichseitigen Dreiecksgitters. Ann. Scuola. Norm. Super. Pisa (2) 13 (1944), 51–58. (1948)Google Scholar
  20. 20.
    L. Fejes Tóth, The isepiphan problem for \(n\)-hedra. Am. J. Math. 70, 174–180 (1948)Google Scholar
  21. 21.
    L. Fejes Tóth, Lagerungen in der Ebene, auf der Kugel und in Raum, 2nd edn. (Springer-Verlag, 1953). (1972: Russian translation, Moscow, 1958)Google Scholar
  22. 22.
    L. Fejes Tóth, On close-packings of spheres in spaces of constant curvature. Publ. Math. Debr. 3, 158–167 (1953)MathSciNetzbMATHGoogle Scholar
  23. 23.
    L. Fejes Tóth, Kugelunterdeckungen und Kugelüberdeckungen in Räumen konstanter Krümmung. Arch. Math. 10, 307–313 (1959)Google Scholar
  24. 24.
    L. Fejes Tóth, Neuere Ergebnisse in der diskreten Geometrie. Elem. Math. 15, 25–36 (1960)Google Scholar
  25. 25.
    L. Fejes Tóth, Regular Figures (Pergamon Press, Oxford, 1964)Google Scholar
  26. 26.
    L. Fejes Tóth, Distribution of points in the elliptic plane. Acta Math. Acad. Sci. Hung. 16, 437–440 (1965)MathSciNetCrossRefGoogle Scholar
  27. 27.
    L. Fejes Tóth, Remarks on a theorem of R. M. Robinson. Stud. Sci. Math. Hung. 4, 441–445 (1969)Google Scholar
  28. 28.
    L. Fejes Tóth, Symmetry induced by economy. Comput. Math. Appl. 12, 83–91 (1986)Google Scholar
  29. 29.
    L. Fejes Tóth, H. Sachs, Research problem 17. Period. Math. Hung. 7, 125–127 (1976)Google Scholar
  30. 30.
    L. Flatley, A. Tarasov, M. Taylor, F. Theil, Packing twelve spherical caps to maximize tangencies. J. Comput. Appl. Math. 254, 220–225 (2013)MathSciNetCrossRefGoogle Scholar
  31. 31.
    A. Florian, Eine Ungleichung über konvexe Polyeder. Monatsh. Math. 60, 130–156 (1956)MathSciNetCrossRefGoogle Scholar
  32. 32.
    A. Florian, Extremum problems for convex discs and polyhedra, in Handbook of Convex Geometry, ed. by P.M. Gruber, J.M. Wills (Elsevier, Amsterdam, 1993), pp. 177–221CrossRefGoogle Scholar
  33. 33.
    M. Goldberg, The isoperimetric problem for polyhedra. Tohoku Math. J. 40, 226–236 (1934)zbMATHGoogle Scholar
  34. 34.
    W. Habicht und, B.L. van der Waerden, Lagerungen von Punkten auf der Kugel. Math. Ann. 123, 223–234 (1951)MathSciNetCrossRefGoogle Scholar
  35. 35.
    H. Hadwiger, Vorlesungen über lnhalt, Oberfläche und lsoperimetrie (Springer, Berlin, 1957)CrossRefGoogle Scholar
  36. 36.
    L. Hárs, The Tammes problem for \(n=10\). Stud. Sci. Math. Hung. 21, 439–451 (1986)Google Scholar
  37. 37.
    G. Kertész, Nine points on the hemisphere. Colloq. Math. Soc. J. Bolyai (Intuitive Geometry, Szeged 1991) 63, 189–196 (1994)MathSciNetzbMATHGoogle Scholar
  38. 38.
    L. Lindelöf, Propriétés générales des polyèdres qui, sous une étendue superficielle donnée, renferment le plus grand volume. Math. Ann. 2, 150–159 (1869)MathSciNetCrossRefGoogle Scholar
  39. 39.
    S. Lhuilier, De relatione mutua capacitatis et terminorum figuranum, etc. Varsaviae (1782)Google Scholar
  40. 40.
    H. Meschkowski, Unsolved and Unsolvable Problems in Geometry (Frederick Ungar Publishing Company, New York, 1966)zbMATHGoogle Scholar
  41. 41.
    H. Minkowski, Allgemeine Lehrsätze, über konvexe Polyeder. Nachr. Ges. Wiss. Göttingen, math.-physisk. Kl. 198–219 (1897). (\(=\) Ges. Abbh. II. Leipzig und Berlin 1911 1033–121)Google Scholar
  42. 42.
    O.R. Musin, The problem of the twenty-five spheres. Russ. Math. Surv. 58, 794–795 (2003)MathSciNetCrossRefGoogle Scholar
  43. 43.
    O.R. Musin, The one-sided kissing number in four dimensions. Period. Math. Hung. 53, 209–225 (2006)MathSciNetCrossRefGoogle Scholar
  44. 44.
    O.R. Musin, The kissing number in four dimensions. Ann. Math. 168(1), 1–32 (2008)MathSciNetCrossRefGoogle Scholar
  45. 45.
    O.R. Musin, Bounds for codes by semidefinite programming. Proc. Steklov Inst. Math. 263, 134–149 (2008)MathSciNetCrossRefGoogle Scholar
  46. 46.
    O.R. Musin, A.S. Tarasov, The strong thirteen spheres problem. Discret. Comput. Geom. 48, 128–141 (2012)MathSciNetCrossRefGoogle Scholar
  47. 47.
    O.R. Musin, A.S. Tarasov, Enumeration of irreducible contact graphs on the sphere. J. Math. Sci. 203, 837–850 (2014)MathSciNetCrossRefGoogle Scholar
  48. 48.
    O.R. Musin, A.S. Tarasov, Extreme problems of circle packings on a sphere and irreducible contact graphs. Proc. Steklov Inst. Math. 288, 117–131 (2015)MathSciNetCrossRefGoogle Scholar
  49. 49.
    O.R. Musin, A.S. Tarasov, The Tammes problem for N \(=\) 14. Exp. Math. 24(4), 460–468 (2015)Google Scholar
  50. 50.
    G. Pólya, Induction and Analogy in Mathematics (Princeton University Press, Princeton, 1954)zbMATHGoogle Scholar
  51. 51.
    R.M. Robinson, Arrangement of 24 circles on a sphere. Math. Ann. 144, 17–48 (1961)MathSciNetCrossRefGoogle Scholar
  52. 52.
    R.M. Robinson, Finite sets on a sphere with each nearest to five others. Math. Ann. 179, 296–318 (1969)MathSciNetCrossRefGoogle Scholar
  53. 53.
    H. Sachs, No more than nine unit balls can touch a closed hemisphere. Stud. Sci. Math. Hung. 21, 203–206 (1986)MathSciNetzbMATHGoogle Scholar
  54. 54.
    J. Steiner, Uber Maximum und Minimum bei Figuren in der Ebene, auf der Kugelflache und im Raume berhaupt. J. Math Pres Appl. 6, 105–170 (1842). (\(=\) Gesammelte Werke II 254–308, Reimer, Berlin 1882)Google Scholar
  55. 55.
    K. Schütte, B.L. van der Waerden, Auf welcher Kugel haben 5, 6, 7, 8 oder 9 Punkte mit Mindestabstand 1 Platz? Math. Ann. 123, 96–124 (1951)MathSciNetCrossRefGoogle Scholar
  56. 56.
    K. Schütte, B.L. van der Waerden, Das problem der dreizehn Kugeln. Math. Ann. 125, 325–334 (1953)MathSciNetCrossRefGoogle Scholar
  57. 57.
    L. Szabó, 21-neighbour packing of equal balls in the 4-dimensional Euclidean space. Geom. Dedicata 38, 193–197 (1991)MathSciNetCrossRefGoogle Scholar
  58. 58.
    R.M.L. Tammes, On the origin number and arrangement of the places of exits on the surface of pollengrains. Rec. Trv. Bot. Neerl. 27, 1–84 (1930)Google Scholar
  59. 59.
    B.L. van der Waerden, Punkte auf der Kugel. Drei Zusätze. Math. Ann. 125, 213–222 (1952)MathSciNetCrossRefGoogle Scholar
  60. 60.
    B.L. van der Waerden, Pollenkörner. Punktverteilungen auf der Kugel und Informationstheorie, Die Naturwissenschaften 48, 189–192 (1961)CrossRefGoogle Scholar
  61. 61.
    G.M. Ziegler, Lectures on Polytopes, vol. 152, Graduate Texts in Mathematics (Springer, Berlin, 1995)zbMATHGoogle Scholar

Copyright information

© János Bolyai Mathematical Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mathematical and Statistical SciencesUniversity of Texas Rio Grande Valley, One West University BoulevardBrownsvilleUSA

Personalised recommendations