Advertisement

Spaces of Convex n-Partitions

  • Emerson LeónEmail author
  • Günter M. Ziegler
Chapter
Part of the Bolyai Society Mathematical Studies book series (BSMS, volume 27)

Abstract

We construct and study the space \({\mathcal {C}}({\mathbb {R}}^d,n)\) of all partitions of \({\mathbb {R}}^d\) into n non-empty open convex regions (n-partitions). A representation on the upper hemisphere of an n-sphere is used to obtain a metric and thus a topology on this space. We show that the space of partitions into possibly empty regions \({\mathcal {C}}({\mathbb {R}}^d,\le n)\) yields a compactification with respect to this metric. We also describe faces and face lattices, combinatorial types, and adjacency graphs for n-partitions, and use these concepts to show that \({\mathcal {C}}({\mathbb {R}}^d,n)\) is a union of elementary semialgebraic sets.

Notes

Acknowledgements

This paper presents main results of the doctoral thesis of the first author [10]. We are very grateful to both referees for very valuable and thoughtful comments.

References

  1. 1.
    I. Bárány, P.V.M. Blagojević, A. Szűcs, Equipartitioning by a convex \(3\)-fan. Adv. Math. 223, 579–593 (2010)Google Scholar
  2. 2.
    S. Basu, R. Pollack, M.-F. Roy, Algorithms in Real Algebraic Geometry, 2nd edn., Algorithms and Computation in Mathematics, vol 10 (Springer, Berlin, 2006)Google Scholar
  3. 3.
    A. Björner, in Topological Methods, vol II, ed. by R. Graham, M. Grötschel, L. Lovász (North-Holland/Elsevier, Amsterdam, 1995), Handbook of Combinatorics, pp. 1819–1872Google Scholar
  4. 4.
    P.V.M. Blagojević, G.M. Ziegler, Convex equipartitions via equivariant obstruction theory. Isr. J. Math. 200, 49–77 (2014)MathSciNetCrossRefGoogle Scholar
  5. 5.
    J. Bochnak, M. Coste, M.F. Roy, Géométrie Algébrique Réelle, Ergebnisse Math. Grenzgebiete (3), vol 12 (Springer, Berlin, 1987)Google Scholar
  6. 6.
    F. Aurenhammer, A criterion for the affine equivalence of cell complexes in \({\mathbb{R}}^d\) and convex polyhedra in \({\mathbb{R}}^{d+1}\). Discret. Comput. Geom. 2, 49–64 (1987)Google Scholar
  7. 7.
    P.M. Gruber, P. Kenderov, Approximation of convex bodies by polytopes. Rend. Circ. Mat. Palermo (2) 31(2), 195–225 (1982)MathSciNetCrossRefGoogle Scholar
  8. 8.
    J.A. De Loera, S. Hoşten, F. Santos, B. Sturmfels, The polytope of all triangulations of a point configuration. Doc. Math. 1, 103–119 (1996)Google Scholar
  9. 9.
    K. Rybnikov, Stresses and liftings of cell-complexes. Discret. Comput. Geom. 21, 481–517 (1999)MathSciNetCrossRefGoogle Scholar
  10. 10.
    E. León, Spaces of convex \(n\)-partitions. Ph.D. thesis, vol vi (Freie Universität Berlin, 2015), p. 101 published at www.diss.fu-berlin.de
  11. 11.
    M. Gromov, Isoperimetry of waists and concentration of maps. Geom. Funct. Anal. (GAFA) 13, 178–215 (2013)Google Scholar
  12. 12.
    J.R. Munkres, Elements of Algebraic Topology (Addison-Wesley, Menlo Park, 1984)Google Scholar
  13. 13.
    R. Nandakumar, Fair partitions. Blog entry, http://nandacumar.blogspot.de/2006/09/cutting-shapes.html, 28 September 2006
  14. 14.
    R. Nandakumar, N.R. Rao, Fair partitions of polygons: an elementary introduction. Proc. Indian Acad. Sci.–Math. Sci. 122, 459–467 (2012)MathSciNetCrossRefGoogle Scholar
  15. 15.
    J. Richter-Gebert, Realization Spaces of Polytopes, Lecture Notes in Mathematics, vol 1643 (Springer, Heidelberg, 1996)CrossRefGoogle Scholar
  16. 16.
    R.T. Firla, G.M. Ziegler, Hilbert bases, unimodular triangulations, and binary covers of rational polyhedral cones. Discret. Comput. Geom. 21, 205–216 (1999)MathSciNetCrossRefGoogle Scholar
  17. 17.
    R.N. Karasev, A. Hubard, B. Aronov, Convex equipartitions: the spicy chicken theorem. Geometriae Dedicata 170, 263–279 (2014)MathSciNetCrossRefGoogle Scholar
  18. 18.
    P. Soberón, Balanced convex partitions of measures in \({\mathbb{R}}^d\). Mathematika 58, 71–76 (2012)Google Scholar
  19. 19.
    W. Whiteley, \(3\)-diagrams and Schlegel diagrams of simple \(4\)-polytopes. Preprint 1994Google Scholar
  20. 20.
    G.M. Ziegler, Lectures on Polytopes, Graduate Texts in Math., vol 152 (Springer, New York, 1995). Revised edition, 1998; seventh updated printing 2007CrossRefGoogle Scholar

Copyright information

© János Bolyai Mathematical Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Depto. de MatemáticasUniversidad de los AndesBogotáColombia
  2. 2.Inst. Mathematics, FU BerlinBerlinGermany

Personalised recommendations