Advertisement

Configuration Spaces of Equal Spheres Touching a Given Sphere: The Twelve Spheres Problem

  • Rob KusnerEmail author
  • Wöden Kusner
  • Jeffrey C. Lagarias
  • Senya Shlosman
Chapter
Part of the Bolyai Society Mathematical Studies book series (BSMS, volume 27)

Abstract

The problem of twelve spheres is to understand, as a function of \(r \in (0,r_{max}(12)]\), the configuration space of 12 non-overlapping equal spheres of radius r touching a central unit sphere. It considers to what extent, and in what fashion, touching spheres can be varied, subject to the constraint of always touching the central sphere. Such constrained motion problems are of interest in physics and materials science, and the problem involves topology and geometry. This paper reviews the history of work on this problem, presents some new results, and formulates some conjectures. It also presents general results on configuration spaces of N spheres of radius r touching a central unit sphere, with emphasis on \(3 \le N \le 14\). The problem of determining the maximal radius \(r_{max}(N)\) is a version of the Tammes problem, to which László Fejes Tóth made significant contributions.

Keywords

Configuration spaces Discrete geometry Morse theory Constrained optimization Criticality Materials science 

2010 Mathematics Subject Classification

11H31 49K35 52C17 52C25 53C22 55R80 57R70 58E05 58K05 70G10 82B05 

Notes

Acknowledgements

The authors were each supported by ICERM in the Spring 2015 program on “Phase Transitions and Emergent Properties.” R. K. was also supported by the University of Pennsylvania Mathematics Department sabbatical visitor fund and by MSRI via NSF grant DMS-1440140. W. K. was also supported by Austrian Science Fund (FWF) Project 5503. J. L. was supported by NSF grant DMS-1401224 and by a Clay Senior Fellowship at ICERM. Part of the work of S. S. has been carried out in the framework of the Labex Archimede (ANR-11-LABX-0033) and of the A*MIDEX project (ANR-11-IDEX-0001-02), funded by the “Investissements d’Avenir” French Government programme managed by the French National Research Agency (ANR). Part of the work of S. S. has been carried out at IITP RAS. The support of Russian Foundation for Sciences (Project No. 14-50-00150) is gratefully acknowledged. The authors thank Bob Connelly, Sharon Glotzer, Mark Goresky, Tom Hales and Oleg Musin for helpful comments. Parts of Sect. 4.1 are adapted from unpublished notes by R. K. and John Sullivan (MSRI, 1994) about critical configurations of “electrons” on the sphere.

References

  1. 1.
    A. Abrams, R. Ghrist, Finding topology in a factory: configuration spaces. Am. Math. Mon. 109(2), 140–150 (2002)MathSciNetCrossRefGoogle Scholar
  2. 2.
    H. Alpert, Restricting cohomology classes to disk and segment configuration spaces. Topol. Appl. 230, 51–76 (2017)MathSciNetCrossRefGoogle Scholar
  3. 3.
    P.W. Anderson, Through the glass lightly. Science 267, 1615 (1995)CrossRefGoogle Scholar
  4. 4.
    K. Anstreicher, The thirteen spheres: a new proof. Discret. Comput. Geom. 31, 613–625 (2004)MathSciNetCrossRefGoogle Scholar
  5. 5.
    C. Austin, Angell, Insights into phases of liquid water from study of its unusual glass-forming properties. Science 1(319), 582–587 (2008)Google Scholar
  6. 6.
    V.I. Arnold, The cohomology ring of dyed braids, (Russian) Mat. Zametki 5, 227–231 (1969)Google Scholar
  7. 7.
    T. Aste, D. Weaire, The Pursuit of Perfect Packing (Institute of Physics Publishing, London, 2000)zbMATHGoogle Scholar
  8. 8.
    W. Barlow, Probable nature of the internal symmetry of crystals. Nature 29(186–188), 205–207 (1883)CrossRefGoogle Scholar
  9. 9.
    Y. Baryshnikov, P. Bubenik, M. Kahle, Min-type Morse theory for configuration spaces of hard spheres. Int. Math. Res. Not. IMRN 2014(9), 2577–2592 (2014)MathSciNetCrossRefGoogle Scholar
  10. 10.
    C. Bender, Bestimmung der grössten Anzahl gleich grosser Kugeln, welche sich auf eine Kugel von demselben Radius, wie die übrigen, auflegen lassen. Acrhiv der Mathematik und Physik 56, 302–306 (1874)zbMATHGoogle Scholar
  11. 11.
    K. Böröczky, The problem of Tammes for \(n=11\). Studia Sci. Math. Hung. 18(2–4), 165–171 (1983)MathSciNetzbMATHGoogle Scholar
  12. 12.
    K. Böröczky, L. Szabó, Arrangements of \(13\) Points on a Sphere, in by A, ed. by Discrete Geometry (Marcel Dekker, Bezdek (New York, 2003), pp. 111–184zbMATHGoogle Scholar
  13. 13.
    K. Böröczky, L. Szabó, Arrangements of \(14, 15, 16\) and \(17\) Points on a Sphere. Studi. Sci. Math. Hung. 40, 407–421 (2003)MathSciNetzbMATHGoogle Scholar
  14. 14.
    J. Cantarella, J.H. Fu, R. Kusner, J.M. Sullivan, N.C. Wrinkle, Criticality for the Gehring link problem. Geom. Topol. 10, 2055–2116 (2006)MathSciNetCrossRefGoogle Scholar
  15. 15.
    G. Carlsson, J. Gorham, M. Kahle, J. Mason, Computational topology for configuration spaces of hard disks. Phys. Rev. E 85, 011303 (2012)CrossRefGoogle Scholar
  16. 16.
    F.R. Cohen, Artin’s braid groups, classical homotopy theory, and sundry other curiosities, 167–206, in Braids, Contemporary Mathematics, vol. 78 (American Mathatical Society, 1988)Google Scholar
  17. 17.
    F.R. Cohen, Introduction to Configuration Spaces and Their Applications. Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore, vol. 19 (World Scientific Publishing, Hackensack, 2010)CrossRefGoogle Scholar
  18. 18.
    H. Cohn, Y. Jian, A. Kumar, S. Torquato, Rigidity of spherical codes. Geom. Topol. 15, 2235–2273 (2011)MathSciNetCrossRefGoogle Scholar
  19. 19.
    R. Connelly, Rigidity of packings. Eur. J. Comb. 29(8), 1862–1871 (2008)MathSciNetCrossRefGoogle Scholar
  20. 20.
    J.H. Conway, N.J.A. Sloane, Sphere Packings, Lattices and Groups, 3rd edn. (Springer, New York, 1998). (First Edition: 1988)Google Scholar
  21. 21.
    H.S.M. Coxeter, The problem of packing a number of equal non-overlapping circles on a sphere. Trans. New York Acad. Sci. Ser. II(24), 220–231 (1962)Google Scholar
  22. 22.
    L. Danzer, Endliche Punktmengen auf der 2-Sphäre mit möglichst grossen Minimalabstand, Habilitationsschrift (University of Göttingen, Göttingen, 1963)Google Scholar
  23. 23.
    L. Danzer, Finite point-sets on \({\bf S}^2\) with minimum distance as large as possible. Discret. Math. 60, 3–66 (1986). [English translation of Danzer Habilitationsschrift, with extra references added.]Google Scholar
  24. 24.
    D.M. Dennison, The crystal structure of ice. Phys. Rev. 17, 20–22 (1921). (Science 24 Sept. 1920 52(1343), 296–297)CrossRefGoogle Scholar
  25. 25.
    A. Donev, S. Torquato, F.H. Stillinger, R. Connelly, Jamming in hard sphere and hard disk packings. J. Appl. Phys. 95(3), 989–999 (2004)CrossRefGoogle Scholar
  26. 26.
    M.D. Ediger, C.A. Angell, S.R. Nagel, Supercooled liquids and glasses. J. Phys. Chem. 100, 13200–13212 (1996)CrossRefGoogle Scholar
  27. 27.
    A.C. Edmondson, A Fuller Explanation: The Synergetic Geometry of R (Buckminster Fuller, Birkhäuser, Boston, 1987)CrossRefGoogle Scholar
  28. 28.
    E.R. Fadell, Homotopy groups of configuration spaces and the string problem of Dirac. Duke Math. J. 29, 231–242 (1962)MathSciNetCrossRefGoogle Scholar
  29. 29.
    E.R. Fadell, S.Y. Husseini, Geometry and Topology of Configuration Spaces, Springer Monographs in Mathematics (Springer, Berlin, 2001)CrossRefGoogle Scholar
  30. 30.
    E.R. Fadell, L. Newirth, Configuration spaces. Math. Scand. 10, 111–118 (1962)MathSciNetCrossRefGoogle Scholar
  31. 31.
    M. Farber, Invitation to Topological Robotics, Zürich Lectures in Advanced Mathematics (European Mathematical Society, Switzerland, 2008)CrossRefGoogle Scholar
  32. 32.
    E.M. Feichtner, G.M. Ziegler, The integral cohomology algebras of ordered configuration spaces of spheres. Doc. Math. 5, 115–139 (2000)MathSciNetzbMATHGoogle Scholar
  33. 33.
    L. Fejes Tóth, Über die Abschätzung des kürzesten Abstandes zweier Punkte eines auf einer Kugelfäches liegenden Punktsystems. Jber. Deutsch. Math. Verein. 53, 66–68 (1943)Google Scholar
  34. 34.
    L. Fejes, Tóth, Über die dichteste Kugellagerung. Math. Z. 48, 676–684 (1943)Google Scholar
  35. 35.
    L. Fejes, Tóth, On the densest packing of spherical caps. Am. Math. Mon. 56, 330–331 (1949)CrossRefGoogle Scholar
  36. 36.
    L. Fejes Tóth, Lagerungen in der Ebene, auf der Kugel und in Raum (Springer, Berlin, 1953). (2nd edn. 1972)Google Scholar
  37. 37.
    L. Fejes Tóth, Kugelunterdeckungen und Kugelüberdeckungen in Räumen konstanter Krümmung. Archiv der Math. 10, 307–313 (1959)Google Scholar
  38. 38.
    L. Fejes Tóth, Eräitä “kauniita” extremaalikuvioita, (Finnish) [On some “nice” extremal figures] Arkhimedes 1959(2), 1–10 (1959)Google Scholar
  39. 39.
    L. Fejes, Tóth, Remarks on a theorem of R. M. Robinson. Studia Scientiarum Mathematicarum Hungarica 4, 441–445 (1969)zbMATHGoogle Scholar
  40. 40.
    F.C. Frank, Supercooling of liquids. Proc. R. Soc. Lond. A Math. Phys. Sci. 215, 43–46 (1952)Google Scholar
  41. 41.
    D.B. Fuks, Cohomologies of the braid group mod \(2\). Funct. Anal. Appl. 4, 143–151 (1970)CrossRefGoogle Scholar
  42. 42.
    R.B. Fuller, Synergetics: The Geometry of Thinking (Macmillan, New York, 1976)Google Scholar
  43. 43.
    V. Gershkovich, H. Rubinstein, Morse theory for Min-type functions. Asian J. Math. 1(4), 696–715 (1997)MathSciNetCrossRefGoogle Scholar
  44. 44.
    M. Goresky, R. MacPherson, Stratified Morse Theory, Ergebnisse der Mathematik und ihrer Grenzgeiete 14 (Springer, Berlin, 1988)Google Scholar
  45. 45.
    R.L. Graham, D. Knuth, O. Patashnik, Concrete Mathematics: A Foundation For Computer Science (Addison-Wesley, Reading, 1994)Google Scholar
  46. 46.
    D. Gregory, The Elements of Astronomy, Physical and Geometrical. Done into English, with Additions and Corrections. To which is annex’d Dr. Halley’s Synopsis of the Astronomy of Comets. In Two Volumes, Printed for John Morphew near Stationers Hall: London MDCCXVGoogle Scholar
  47. 47.
    S. Günther, Ein sterometrisches problem. Archiv Math. Physik (Grunert) 57, 209–215 (1875)Google Scholar
  48. 48.
    W. Habicht, B.L. van der Waerden, Lagerungen von Punkten auf der Kugel. Math. Ann. 123, 223–234 (1951)MathSciNetCrossRefGoogle Scholar
  49. 49.
    T. Hales, The status of the Kepler conjecture. Math. Intell. 16, 47–58 (1994)MathSciNetCrossRefGoogle Scholar
  50. 50.
    T. Hales, The strong dodecahedral conjecture and Fejes Tóth’s conjecture on sphere packings with kissing number twelve, pp. 121–132 in: Discrete Geometry and Optimization, (K. Bezdek, A. Deza, Y. Ye, eds.) Fields Inst. Commun. 69: Fields Institute, Toronto (2013)Google Scholar
  51. 51.
    T. Hales et. al., M. Adams, G. Bauer, Dat Tat Dang, T. Harrison, Truong Le Hoang, C. Kaliszk, V. Magron, S. McLaughlin, Thang Tat Nguyen, Truong Quang Nguyen, T. Nipkow, S. Obua, J. Pleso, J. Rute, A. Solovyev, Hoai Thi Ta, Trung Nam Tran, Diep Thi Trieu, J. Urban, Ky Khac Vu, R. Zumkeller, A Formal Proof of the Kepler Conjecture, arXiv:1501.02155
  52. 52.
    T. Hales, S. McLaughlin, The dodecahedral conjecture. J. Am. Math. Soc. 23(2), 299–344 (2010)MathSciNetCrossRefGoogle Scholar
  53. 53.
    T. Hariot, A Briefe and True Report of the New Found Land of Virginia (Frankfort, Johannis Wecheli, 1590)Google Scholar
  54. 54.
    L. Hárs, The Tammes problem for \(n=10\). Studia Sci. Math. Hungar. 21(3–4), 439–451 (1986)MathSciNetzbMATHGoogle Scholar
  55. 55.
    N.J. Hicks, Notes on Differential Geometry (Van Nostrand Co Inc, Princeton, 1965)zbMATHGoogle Scholar
  56. 56.
    W.G. Hiscock (ed), David Gregory, Isaac Newton and the Circle. Extracts from David Gregory’s Memoranda 1677–1708 (Oxford, Printed for the Editor 1937)Google Scholar
  57. 57.
    M. Holmes-Cerfon, Enumerating rigid sphere packings. SIAM Rev. 58(2), 229–244 (2016)MathSciNetCrossRefGoogle Scholar
  58. 58.
    R. Hoppe, Bemerkung der Redaktion. Archiv der Mathematik und Physik (Grunert) 56, 307–312 (1874)Google Scholar
  59. 59.
    M.A. Hoskin, Newton, providence and the universe of stars. J. Hist. Astron. (JHA) 8, 77–101 (1977)CrossRefGoogle Scholar
  60. 60.
    R.H. Kargon, Atomism in England from Hariot to Newton (Clarendon Press, Oxford, 1966)zbMATHGoogle Scholar
  61. 61.
    J. Kepler, Strena seu de nive Sexangula, Frankfurt, Jos. Tampach 1611. Translation as: The Six-Cornered Snowflake: A New Year’s Gift (Colin Hardie, Translator) (Clarendon Press, Oxford, 1966)Google Scholar
  62. 62.
    J. Kepler, Epitome Astronomiae Copernicae, usitatâ formâ Quaestionum & Responsionum conscripta, inq; VII. Libros digesta, quorum TRES hi priores sunt de Doctrina Sphaericâ , Lentijs ad Danubium, excudebat Johannes Plancus, MDCXVIIIGoogle Scholar
  63. 63.
    A. Koyré, From the Closed World to the Infinite Universe (The Johns Hopkins Press, Baltimore, 1957)Google Scholar
  64. 64.
    R. Kusner, W. Kusner, J.C. Lagarias, S. Shlosman, Max-min Morse Theory for Configurations on the 2-Sphere, Paper in PreparationGoogle Scholar
  65. 65.
    J.C. Lagarias (ed) The Kepler Conjecture: The Hales-Ferguson Proof, by Thomas C. Hales, Samuel P. Ferguson (Springer, New York, 2011)Google Scholar
  66. 66.
    J. Leech, The problem of the thirteen spheres. Math. Gaz. 40, 22–23 (1956)MathSciNetCrossRefGoogle Scholar
  67. 67.
    A.J. Liu, S.R. Nagel, The jamming transition and the marginally jammed solid. Ann. Rev. Condens. Matter Phys. 1, 347–369 (2010)CrossRefGoogle Scholar
  68. 68.
    H. Löwen, Fun with hard spheres, in Statistical Physics and Spatial Statistics (Wuppertal, 1999). Lecture Notes in Physics, vol. 554 (Springer, Berlin, 2000), pp. 295–331Google Scholar
  69. 69.
    B. Lubachevsky, R.L. Graham, Dense packings of \(3k(3k+1) +1\) equal disks, in a circle for\(k=1,2,3, 4,\)and 5, in Computing and Combinatorics, First Annual Conference, COCOON ’95, Lecture Notes in Computer Science, ed. by Du Ding-Zhu, Ming Li, vol. 959, (Springer, New York, 1995), pp. 302–311Google Scholar
  70. 70.
    B. Lubachevsky, F.H. Stillinger, Geometric properties of hard disk packings. J. Stat. Phys. 60(5–6), 561–583 (1990)Google Scholar
  71. 71.
    H. Maehara, Isoperimetric problem for spherical polygons and the problem of \(13\) spheres. Ryukyu Math. J. 14, 41–57 (2001)MathSciNetzbMATHGoogle Scholar
  72. 72.
    H. Maehara, The problem of thirteen spheres-a proof for undergraduates. Eur. J. Combin. 28, 1770–1778 (2007)MathSciNetCrossRefGoogle Scholar
  73. 73.
    T.W. Melnyk, O. Knop, W.R. Smith, Extremal arrangements of points and unit charges on a sphere: equilibrium configurations revisited. Canad. J. Chem. 55, 1745–1761 (1977)MathSciNetCrossRefGoogle Scholar
  74. 74.
    J. Milnor, Morse Theory. Based on Lecture Notes by M. Spivak, R. Wells. Annals of Mathematics Studies vol. 51 (Princeton University Press, Princeton, 1963)Google Scholar
  75. 75.
    O. Musin, The kissing problem in three dimensions. Discret. Comput. Geom. 35, 375–384 (2006)MathSciNetCrossRefGoogle Scholar
  76. 76.
    O. Musin, A.S. Tarasov, The strong thirteen spheres problem. Discret. Comput. Geom. 48(1), 128–141 (2012)MathSciNetCrossRefGoogle Scholar
  77. 77.
    O. Musin, A.S. Tarasov, Enumerations of irreducible contact graphs on the sphere. Fundam. Prikl. Mat. 18(2), 125–145 (2013)Google Scholar
  78. 78.
    O. Musin, A.S. Tarasov, The Tammes problem for \(N=14\). Exper. Math. 24, 460–468 (2015)MathSciNetCrossRefGoogle Scholar
  79. 79.
    C.S. O’Hern, L.E. Silbert, A.J. Liu, S.R. Nagel, Jamming at zero temperature and zero applied stress: the epitome of disorder. Phys. Rev. E 68, 011306 (2003)CrossRefGoogle Scholar
  80. 80.
    I. Newton, The Correspondence of Isaac Newton, ed. by H.W. Turnbull, J.F. Scott, vol. 9 (Cambridge University Press, Cambridge, 1961)Google Scholar
  81. 81.
    L. Pauling, The structure and entropy of ice and other crystals with some randomness of atomic arrangement. J. Am. Chem. Soc. 57, 2680–2684 (1935)CrossRefGoogle Scholar
  82. 82.
    C.L. Phillips, E. Jankowski, M. Marval, S.C. Glotzer, Self-assembled clusters of spheres related to spherical codes. Phys. Rev. E 86, 041124 (2012)CrossRefGoogle Scholar
  83. 83.
    C.L. Phillips, E. Jankowski, B.J. Krishnatreya, K.V. Edmond, S. Sacanna, D.G. Grier, D.J. Pine, S.C. Glotzer, Digital colloids: reconfigurable clusters as high information density elements. Soft Matter 10, 7468–7479 (2014)CrossRefGoogle Scholar
  84. 84.
    A. Postnikov, R. Stanley, Deformations of Coxeter hyperplane arrangements. In memory of Gian-Carlo Rota. J. Comb Theory Ser. A 91(1–2), 544–597 (2000)MathSciNetCrossRefGoogle Scholar
  85. 85.
    R.M. Robinson, Arrangements of \(24\) points on a sphere. Math. Ann. 144, 17–48 (1961)MathSciNetCrossRefGoogle Scholar
  86. 86.
    R.M. Robinson, Finite sets of points on a sphere with each nearest to five others. Math. Ann. 179, 296–318 (1969)MathSciNetCrossRefGoogle Scholar
  87. 87.
    K. Schütte, B.L. van der Waerden, Auf welcher Kugel haben \(5, 6, 7, 8\) oder \(9\) Punkte mit Mindestabstand \(1\) Platz? Math. Ann. 123, 96–124 (1951)MathSciNetCrossRefGoogle Scholar
  88. 88.
    K. Schütte, B.L. van der Waerden, Das problem der dreizehn Kugeln. Math. Ann. 125, 325–334 (1953)MathSciNetCrossRefGoogle Scholar
  89. 89.
    C. Schwabe, Eureka and Serendipity: The Rudolf van Laban Icosahedron and Buckminster Fuller’s Jitterbug, Bridges, Mathematics. Music, Art, Architecture, Culture 2010, 271–278 (2010)Google Scholar
  90. 90.
    G.D. Scott, D.M. Kilgour, The density of random close packing of spheres. Brit. J. Appl. Phys. (J. Phys. D) 2, 863–866 (1969)CrossRefGoogle Scholar
  91. 91.
    J.W. Shirley, Thomas Hariot: A Biography (Clarendon Press, Oxford, 1983)Google Scholar
  92. 92.
    P.M.L. Tammes, On the origin of number and arrangement of the places of exit on the surface of pollen-grains. Recueil des travaux botaniques néerlandais 27, 1–84 (1930)Google Scholar
  93. 93.
    T. Tarnai, Zs. Gáspár, Improved packing of equal circles on a sphere and rigidity of its graph. Math. Proc. Camb. Phil. Soc. 93, 191–218 (1983)CrossRefGoogle Scholar
  94. 94.
    T. Tarnai, Zs. Gáspár, Arrangements of \(23\) points on a sphere (on a conjecture of R.M. Robinson). Proc. R. Soc. Lond. Ser. A 433, 257–267 (1991)Google Scholar
  95. 95.
    S. Torquato, F. Stillinger, Jammed hard-particle packings: from Kepler to Bernal and beyond. Rev. Mod. Phys. 82, 2633–2672 (2010)CrossRefGoogle Scholar
  96. 96.
    B. Totaro, Configuration spaces of algebraic varieties. Topology 35(4), 1057–1067 (1996)MathSciNetCrossRefGoogle Scholar
  97. 97.
    H. Verheyen, The complete set of jitterbug transformers and the analysis of their motion, symmetry 2: unifying human understanding. Comput. Math. Appl. 17(1–3), 203–250 (1989)MathSciNetCrossRefGoogle Scholar
  98. 98.
    H. Whitney, Tangents to an analytic variety. Ann. Math. 81, 496–549 (1964)MathSciNetCrossRefGoogle Scholar

Copyright information

© János Bolyai Mathematical Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Rob Kusner
    • 1
  • Wöden Kusner
    • 2
    • 3
  • Jeffrey C. Lagarias
    • 4
  • Senya Shlosman
    • 5
    • 6
    • 7
  1. 1.Department of Mathematics & StatisticsUniversity of MassachusettsAmherstUSA
  2. 2.Institute of Analysis and Number TheoryGraz University of TechnologyGrazAustria
  3. 3.Department of MathematicsVanderbilt UniversityNashvilleUSA
  4. 4.Department of MathematicsUniversity of MichiganAnn ArborUSA
  5. 5.Skolkovo Institute of Science and TechnologyMoscowRussia
  6. 6.Aix Marseille UniversitéUniversité de ToulonMarseilleFrance
  7. 7.Institute for Information Transmission Problems, RASMoscowRussia

Personalised recommendations