Advertisement

Neurokognition und Bewegung

  • Claudia Voelcker-RehageEmail author
  • Dieter F. Kutz
Chapter

Zusammenfassung

Dieses Kapitel gibt einen Überblick über die Neurophysiologie von Bewegung und Lernen. Hierzu werden zunächst die motorischen Systeme, die an der Planung, Ausführung und Kontrolle einer Bewegung beteiligt sind, vorgestellt. Es folgt eine Betrachtung der Besonderheiten der Hirnanatomie und -funktionen in verschiedenen Altersbereichen, insbesondere im Kindes- und Jugendalter und im Seniorenalter. Als Nächstes werden die zentralen neurobiologischen Lernformen sowie funktionelle und strukturelle Änderungen des Gehirns, die mit dem motorischen Lernen einhergehen, zusammengefasst. Anschließend wird der Wissenstand zur Wirkung körperlicher Aktivität auf die Kognition vorgestellt und es werden hierzu verhaltenswissenschaftliche und neurophysiologische Befunde sowie akute und chronische Wirkungen von Aktivität berücksichtigt. Den Abschluss des Kapitels bildet der Themenbereich Dual- bzw. Multitasking.

Literatur

  1. Albert, N. B., Robertson, E. M., & Miall, R. C. (2009). The resting human brain and motor learning. Current Biology, 19(12), 1023–1027.  https://doi.org/10.1016/j.cub.2009.04.028.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alves, C. R., Tessaro, V. H., Teixeira, L. A., Murakava, K., Roschel, H., Gualano, B., & Takito, M. Y. (2014). Influence of acute high-intensity aerobic interval exercise bout on selective attention and short-term memory tasks. Perceptual and Motor Skills, 118(1), 63–72.  https://doi.org/10.2466/22.06.PMS.118k10w4.CrossRefPubMedGoogle Scholar
  3. Baddeley, A. D. (1986). Working memory. Oxford: Oxford Clarendon Press.Google Scholar
  4. Baddeley, A. D. (1996). The concept of working memory. In S. Gathercole (Hrsg.), Models of short-term memory (S. 1–28). Hillsdale: Erlbaum.Google Scholar
  5. Barella, L. A., Etnier, J. L., & Chang, Y. K. (2010). The immediate and delayed effects of an acute bout of exercise on cognitive performance of healthy older adults. Journal of Aging and Physical Activity, 18(1), 87–98.CrossRefGoogle Scholar
  6. Bauswein, E., & Fromm, C. (1992). Activity in the precentral motor areas after presentation of targets for delayed reaching movements varies with the initial arm position. European Journal of Neuroscience, 4(12), 1407–1410.CrossRefGoogle Scholar
  7. Bear, M. F., Connors, B. W., & Paradiso, M. A. (2007). Neurowissenschaften. Berlin: Springer.Google Scholar
  8. Beurze, S. M., de Lange, F. P., Toni, I., & Medendorp, W. P. (2007). Integration of target and effector information in the human brain during reach planning. Journal of Neurophysiology, 97(1), 188–199.  https://doi.org/10.1152/jn.00456.2006.CrossRefPubMedGoogle Scholar
  9. Bezzola, L., Merillat, S., Gaser, C., & Jancke, L. (2011). Training-induced neural plasticity in golf novices. Journal of Neuroscience, 31(35), 12444–12448.  https://doi.org/10.1523/jneurosci.1996-11.2011.CrossRefPubMedGoogle Scholar
  10. Blanksby, B. A., Parker, H. E., Bradley, S., & Ong, V. (1995). Children’s readiness for learning front crawl swimming. Australian Journal of Science and Medicine in Sport, 27(2), 34–37.PubMedGoogle Scholar
  11. Boyke, J., Driemeyer, J., Gaser, C., Buchel, C., & May, A. (2008). Training-induced brain structure changes in the elderly. Journal of Neuroscience, 28(28), 7031–7035.  https://doi.org/10.1523/jneurosci.0742-08.2008.CrossRefPubMedGoogle Scholar
  12. Boyle, P. A., Buchman, A. S., Barnes, L. L., & Bennett, D. A. (2010). Effect of a purpose in life on risk of incident Alzheimer disease and mild cognitive impairment in community-dwelling older persons. Archives of General Psychiatry, 67(3), 304–310.  https://doi.org/10.1001/archgenpsychiatry.2009.208.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Brodmann, K. (1909). Vergleichende Lokalisationslehre der Grosshirnrinde in Ihren Prinzipien Dargestellt auf Grund des Zellenbaues. Leipzig: Barth.Google Scholar
  14. Brookings, J., & Damos, D. (1991). Individual differences in multiple task performance. In D. Damos (Hrsg.), Multiple task performance (S. 363–385). London: Wiley.Google Scholar
  15. Budde, H., et al. (2008). “Acute coordinative exercise improves attentional performance in adolescents.” Neuroscience Letters 441, 219–223.Google Scholar
  16. Budde, H., Windisch, C., Kudielka, B. M., & Voelcker-Rehage, C. (2010). Saliva cortisol in school children after acute physical exercise. Neuroscience Letters, 483(1), 16–19.  https://doi.org/10.1016/j.neulet.2010.07.036.CrossRefPubMedGoogle Scholar
  17. Budde, H., Brunelli, A., Machado, S., Velasques, B., Ribeiro, P., Arias-Carrion, O., & Voelcker-Rehage, C. (2012). Intermittent maximal exercise improves attentional performance only in physically active students. Archives of Medical Research, 43(2), 125–131.  https://doi.org/10.1016/j.arcmed.2012.02.005.CrossRefPubMedGoogle Scholar
  18. Cabeza, R. (2002). Hemispheric asymmetry reduction in older adults: The HAROLD model. Psychology and Aging, 17(1), 85–100.CrossRefGoogle Scholar
  19. Chaddock, L., Erickson, K. I., Prakash, R. S., Kim, J. S., Voss, M. W., Vanpatter, M., et al. (2010a). A neuroimaging investigation of the association between aerobic fitness, hippocampal volume, and memory performance in preadolescent children. Brain Research, 1358, 172–183.CrossRefGoogle Scholar
  20. Chaddock, L., Erickson, K. I., Prakash, R. S., VanPatter, M., Voss, M. W., Pontifex, M. B., et al. (2010b). Basal ganglia volume is associated with aerobic fitness in preadolescent children. Developmental Neuroscience, 32(3), 249–256.CrossRefGoogle Scholar
  21. Chaddock, L., Hillman, C. H., Pontifex, M. B., Johnson, C. R., Raine, L. B., & Kramer, A. F. (2012). Childhood aerobic fitness predicts cognitive performance one year later. Journal of Sports Sciences, 30(5), 421–430.CrossRefGoogle Scholar
  22. Chang, Y. K., Labban, J. D., Gapin, J. I., & Etnier, J. L. (2012). The effects of acute exercise on cognitive performance: A meta-analysis. Brain Research, 1453, 87–101.  https://doi.org/10.1016/j.brainres.2012.02.068.CrossRefPubMedGoogle Scholar
  23. Cisek, P., & Kalaska, J. F. (2010). Neural mechanisms for interacting with a world full of action choices. Annual Review of Neuroscience, 33, 269–298.  https://doi.org/10.1146/annurev.neuro.051508.135409.CrossRefPubMedGoogle Scholar
  24. Colcombe, S. J., Erickson, K. I., Raz, N., Webb, A. G., Cohen, N. J., McAuley, E., & Kramer, A. F. (2003). Aerobic fitness reduces brain tissue loss in aging humans. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 58(2), 176–180.CrossRefGoogle Scholar
  25. Coynel, D., Marrelec, G., Perlbarg, V., Pelegrini-Issac, M., Van de Moortele, P. F., Ugurbil, K., et al. (2010). Dynamics of motor-related functional integration during motor sequence learning. Neuroimage, 49(1), 759–766.  https://doi.org/10.1016/j.neuroimage.2009.08.048.CrossRefPubMedGoogle Scholar
  26. Crammond, D. J., & Kalaska, J. F. (1994). Modulation of preparatory neuronal activity in dorsal premotor cortex due to stimulus-response compatibility. Journal of Neurophysiology, 71(3), 1281–1284.  https://doi.org/10.1152/jn.1994.71.3.1281.CrossRefPubMedGoogle Scholar
  27. Dale, G., & Arnell, K. M. (2010). Individual differences in dispositional focus of attention predict attentional blink magnitude. Attention, Perception, & Psychophysics, 72(3), 602–606.  https://doi.org/10.3758/app.72.3.602.CrossRefGoogle Scholar
  28. Deetjen, P., Speckmann, E.-J., & Hescheler, J. (2005). Physiologie (4. Aufl.). München: Urban & Fischer.Google Scholar
  29. Doyon, J., & Benali, H. (2005). Reorganization and plasticity in the adult brain during learning of motor skills. Current Opinion in Neurobiology, 15(2), 161–167.  https://doi.org/10.1016/j.conb.2005.03.004.CrossRefPubMedGoogle Scholar
  30. Doyon, J., Song, A. W., Karni, A., Lalonde, F., Adams, M. M., & Ungerleider, L. G. (2002). Experience-dependent changes in cerebellar contributions to motor sequence learning. PNAS, 99(2), 1017–1022.  https://doi.org/10.1073/pnas.022615199.CrossRefPubMedGoogle Scholar
  31. Draganski, B., Gaser, C., Busch, V., Schuierer, G., Bogdahn, U., & May, A. (2004). Neuroplasticity: Changes in grey matter induced by training. Nature, 427(6972), 311–312.  https://doi.org/10.1038/427311a.CrossRefPubMedGoogle Scholar
  32. Driemeyer, J., Boyke, J., Gaser, C., Buchel, C., & May, A. (2008). Changes in gray matter induced by learning – Revisited. PLoS One, 3(7), e2669.  https://doi.org/10.1371/journal.pone.0002669.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Drollette, E. S., Scudder, M. R., Raine, L. B., Moore, R. D., Saliba, B. J., Pontifex, M. B., & Hillman, C. H. (2014). Acute exercise facilitates brain function and cognition in children who need it most: An ERP study of individual differences in inhibitory control capacity. Developmental Cognitive Neuroscience, 7, 53–64.  https://doi.org/10.1016/j.dcn.2013.11.001.CrossRefPubMedGoogle Scholar
  34. Enriquez-Geppert, S., Huster, R. J., & Herrmann, C. S. (2013). Boosting brain functions: Improving executive functions with behavioral training, neurostimulation, and neurofeedback. International Journal of Psychophysiology, 88(1), 1–16.  https://doi.org/10.1016/j.ijpsycho.2013.02.001.CrossRefPubMedGoogle Scholar
  35. Erickson, K. I., Colcombe, S. J., Wadhwa, R., Bherer, L., Peterson, M. S., Scalf, P. E., & Kramer, A. F. (2005). Neural correlates of dual-task performance after minimizing task-preparation. Neuroimage, 28(4), 967–979.  https://doi.org/10.1016/j.neuroimage.2005.06.047.CrossRefPubMedGoogle Scholar
  36. Ernst, A., Alkass, K., Bernard, S., Salehpour, M., Perl, S., Tisdale, J., et al. (2014). Neurogenesis in the striatum of the adult human brain. Cell, 156(5), 1072–1083.  https://doi.org/10.1016/j.cell.2014.01.044.CrossRefPubMedGoogle Scholar
  37. Eyre, J. A., Taylor, J. P., Villagra, F., Smith, M., & Miller, S. (2001). Evidence of activity-dependent withdrawal of corticospinal projections during human development. Neurology, 57(9), 1543–1554.  https://doi.org/10.1212/WNL.57.9.1543.CrossRefPubMedGoogle Scholar
  38. Floyer-Lea, A., & Matthews, P. M. (2004). Changing brain networks for visuomotor control with increased movement automaticity. Journal of Neurophysiology, 92(4), 2405–2412.  https://doi.org/10.1152/jn.01092.2003.CrossRefPubMedGoogle Scholar
  39. Gail, A., Klaes, C., & Westendorff, S. (2009). Implementation of spatial transformation rules for goal-directed reaching via gain modulation in monkey parietal and premotor cortex. Journal of Neuroscience, 29(30), 9490–9499.  https://doi.org/10.1523/jneurosci.1095-09.2009.CrossRefPubMedGoogle Scholar
  40. Ghez, C., & Gordon, J. (1996). Einführung in die Motorik. In E. Kandel, J. Schwartz, & T. Jessel (Hrsg.), Neurowissenschaften (S. 499–511). Heidelberg: Spektrum.Google Scholar
  41. Gobel, E. W., Parrish, T. B., & Reber, P. J. (2011). Neural correlates of skill acquisition: Decreased cortical activity during a serial interception sequence learning task. Neuroimage, 58(4), 1150–1157.  https://doi.org/10.1016/j.neuroimage.2011.06.090.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Godde, B., Trautmann, M., Erhard, P., & Voelcker-Rehage, C. (2018). Motor practice in a force modulation task in young and middle-aged adults. Journal of Electromyography and Kinesiology, 38, 224–231.  https://doi.org/10.1016/j.jelekin.2017.12.005.CrossRefPubMedGoogle Scholar
  43. Graziano, M. S. A. (2016). Ethological action maps: A paradigm shift for the motor cortex. Trends in Cognitive Sciences, 20(2), 121–132.  https://doi.org/10.1016/j.tics.2015.10.008.CrossRefPubMedGoogle Scholar
  44. Hamzei, F., Glauche, V., Schwarzwald, R., & May, A. (2012). Dynamic gray matter changes within cortex and striatum after short motor skill training are associated with their increased functional interaction. Neuroimage, 59(4), 3364–3372.  https://doi.org/10.1016/j.neuroimage.2011.10.089.CrossRefPubMedGoogle Scholar
  45. Haug, H. (1986). History of neuromorphometry. Journal of Neuroscience Methods, 18(1–2), 1–17.CrossRefGoogle Scholar
  46. Henz, S., Kutz, D. F., Werner, J., Hurster, W., Kolb, F. P., & Nida-Ruemelin, J. (2015). Stimulus-dependent deliberation process leading to a specific motor action demonstrated via a multi-channel EEG analysis. Frontiers in Human Neuroscience, 9, 355.  https://doi.org/10.3389/fnhum.2015.00355.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Hillman, C. H., Erickson, K. I., & Kramer, A. F. (2008). Be smart, exercise your heart: Exercise effects on brain and cognition. Nature Reviews Neuroscience, 9, 58.  https://doi.org/10.1038/nrn2298.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Hogan, C. L., Mata, J., & Carstensen, L. L. (2013). Exercise holds immediate benefits for affect and cognition in younger and older adults. Psychology and Aging, 28(2), 587–594.  https://doi.org/10.1037/a0032634.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Hopkins, M. E., Davis, F. C., Vantieghem, M. R., Whalen, P. J., & Bucci, D. J. (2012). Differential effects of acute and regular physical exercise on cognition and affect. Neuroscience, 215, 59–68.  https://doi.org/10.1016/j.neuroscience.2012.04.056.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Hoshi, E., & Tanji, J. (2006). Differential involvement of neurons in the dorsal and ventral premotor cortex during processing of visual signals for action planning. Journal of Neurophysiology, 95(6), 3596–3616.  https://doi.org/10.1152/jn.01126.2005.CrossRefPubMedGoogle Scholar
  51. Hoshi, E., Shima, K., & Tanji, J. (2000). Neuronal activity in the primate prefrontal cortex in the process of motor selection based on two behavioral rules. Journal of Neurophysiology, 83(4), 2355–2373.  https://doi.org/10.1152/jn.2000.83.4.2355.CrossRefPubMedGoogle Scholar
  52. Kahneman, D. (1973). Attention and effort. Englewood Cliffs: Prentice-Hall.Google Scholar
  53. Kamijo, K. (2009). Effects of acute exercise on event-related brain potentials. Enhancing cognitive functioning and brain plasticity (S. 111–132). Champaign: Human Kinetics.Google Scholar
  54. Kamijo, K., Nishihira, Y., Higashiura, T., & Kuroiwa, K. (2007). The interactive effect of exercise intensity and task difficulty on human cognitive processing. International Journal of Psychophysiology, 65(2), 114–121.  https://doi.org/10.1016/j.ijpsycho.2007.04.001.CrossRefPubMedGoogle Scholar
  55. Klingberg, T. (1998). Concurrent performance of two working memory tasks: Potential mechanisms of interference. Cerebral Cortex, 8(7), 593–601.CrossRefGoogle Scholar
  56. Kwon, Y. H., Nam, K. S., & Park, J. W. (2012). Identification of cortical activation and white matter architecture according to short-term motor learning in the human brain: Functional MRI and diffusion tensor tractography study. Neuroscience Letters, 520(1), 11–15.  https://doi.org/10.1016/j.neulet.2012.05.005.CrossRefPubMedGoogle Scholar
  57. Lambourne, K., & Tomporowski, P. (2010). The effect of exercise-induced arousal on cognitive task performance: A meta-regression analysis. Brain Research, 1341, 12–24.  https://doi.org/10.1016/j.brainres.2010.03.091.CrossRefPubMedGoogle Scholar
  58. Li, K. Z., & Lindenberger, U. (2002). Relations between aging sensory/sensorimotor and cognitive functions. Neuroscience & Biobehavioral Reviews, 26(7), 777–783.CrossRefGoogle Scholar
  59. Logan, G. D., Yamaguchi, M., Schall, J. D., & Palmeri, T. J. (2015). Inhibitory control in mind and brain 2.0: Blocked-input models of saccadic countermanding. Psychological Review, 122(2), 115–147.  https://doi.org/10.1037/a0038893.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Luft, A. R., & Buitrago, M. M. (2005). Stages of motor skill learning. Molecular Neurobiology, 32(3), 205–216.  https://doi.org/10.1385/mn:32:3:205.CrossRefPubMedGoogle Scholar
  61. Ma, L., Wang, B., Narayana, S., Hazeltine, E., Chen, X., Robin, D. A., et al. (2010). Changes in regional activity are accompanied with changes in inter-regional connectivity during 4 weeks motor learning. Brain Research, 1318, 64–76.  https://doi.org/10.1016/j.brainres.2009.12.073.CrossRefPubMedGoogle Scholar
  62. Ma, L., Narayana, S., Robin, D. A., Fox, P. T., & Xiong, J. (2011). Changes occur in resting state network of motor system during 4 weeks of motor skill learning. Neuroimage, 58(1), 226–233.  https://doi.org/10.1016/j.neuroimage.2011.06.014.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Magnie, M. N., Bermon, S., Martin, F., Madany-Lounis, M., Suisse, G., Muhammad, W., & Dolisi, C. (2000). P300, N400, aerobic fitness, and maximal aerobic exercise. Psychophysiology, 37(3), 369–377.CrossRefGoogle Scholar
  64. Matelli, M., & Luppino, G. (1992). Anatomo-functional parcellation of the agranular frontal cortex. In R. Caminiti, P. B. Johnson, & Y. Burnod (Hrsg.), Control of arm movement in space: Neurophysiological and computational approaches (S. 85–101). Berlin: Springer-Verlag.CrossRefGoogle Scholar
  65. Matelli, M., & Luppino, G. (2004). Architectonics of the primates cortex: Usefulness and limits. Cortex, 40(1), 209–210.CrossRefGoogle Scholar
  66. McMorris, T., & Hale, B. J. (2012). Differential effects of differing intensities of acute exercise on speed and accuracy of cognition: A meta-analytical investigation. Brain and Cognition, 80(3), 338–351.  https://doi.org/10.1016/j.bandc.2012.09.001.CrossRefPubMedGoogle Scholar
  67. McMorris, T., Sproule, J., Turner, A., & Hale, B. J. (2011). Acute, intermediate intensity exercise, and speed and accuracy in working memory tasks: A meta-analytical comparison of effects. Physiology & Behavior, 102(3–4), 421–428.  https://doi.org/10.1016/j.physbeh.2010.12.007.CrossRefGoogle Scholar
  68. Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “Frontal Lobe” tasks: A latent variable analysis. Cognitive Psychology, 41(1), 49–100.  https://doi.org/10.1006/cogp.1999.0734.CrossRefPubMedGoogle Scholar
  69. Nakamura, Y., Nishimoto, K., Akamatu, M., Takahashi, M., & Maruyama, A. (1999). The effect of jogging on P300 event related potentials. Electromyography and Clinical Neurophysiology, 39(2), 71–74.PubMedGoogle Scholar
  70. Nelson, A. B., & Kreitzer, A. C. (2014). Reassessing models of basal ganglia function and dysfunction. Annual Review of Neuroscience, 37, 117–135.  https://doi.org/10.1146/annurev-neuro-071013-013916.CrossRefPubMedPubMedCentralGoogle Scholar
  71. Norman, D., & Shallice, T. (1986). Attention to action: Willed and automatic control of behavior. In R. Davidson, R. Schwartz, & D. Shapiro (Hrsg.), Consciousness and self-regulation: Advances in research and theory IV (S. 1–18). New York, Springer US.Google Scholar
  72. Park, D. C., Polk, T. A., Park, R., Minear, M., Savage, A., & Smith, M. R. (2004). Aging reduces neural specialization in ventral visual cortex. PNAS, 101(35), 13091–13095.  https://doi.org/10.1073/pnas.0405148101.CrossRefPubMedGoogle Scholar
  73. Parker, H. E., & Blanksby, B. A. (1997). Starting age and aquatic skill learning in young children: Mastery of prerequisite water confidence and basic aquatic locomotion skills. Australian Journal of Science and Medicine in Sport, 29(3), 83–87.PubMedGoogle Scholar
  74. Pashler, H., Johnston, J. C., & Ruthruff, E. (2001). Attention and performance. Annual Review of Psychology, 52, 629–651.  https://doi.org/10.1146/annurev.psych.52.1.629.CrossRefPubMedGoogle Scholar
  75. Pontifex, M. B., Hillman, C. H., & Polich, J. (2009). Age, physical fitness, and attention: P3a and P3b. Psychophysiology, 46(2), 379–387.  https://doi.org/10.1111/j.1469-8986.2008.00782.x.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Rolando, L. (1828). Saggio sopra la vera struttura del cervello dell’uomo e degli animali e sopra le funzioni del sistema nervoso (2. Aufl.). Torino: Giunti. (Erstveröffentlichung 1809).Google Scholar
  77. Sakuma, K., Murakami, T., & Nakashima, K. (2007). Short latency afferent inhibition is not impaired in mild cognitive impairment. Clinical Neurophysiology, 118, 1460–1463.  https://doi.org/10.1016/j.clinph.2007.03.018.CrossRefPubMedGoogle Scholar
  78. Salvucci, D. D., & Taatgen, N. A. (2008). Threaded cognition: An integrated theory of concurrent multitasking. Psychological Review, 115(1), 101–130.  https://doi.org/10.1037/0033-295x.115.1.101.CrossRefPubMedGoogle Scholar
  79. Scangos, K. W., Aronberg, R., & Stuphorn, V. (2013). Performance monitoring by presupplementary and supplementary motor area during an arm movement countermanding task. Journal of Neurophysiology, 109, 1928–1939.CrossRefGoogle Scholar
  80. Schmahmann, J. D. (1997). The Cerebellum and Cognition. San Diego: Academic.Google Scholar
  81. Scholz, J., Klein, M. C., Behrens, T. E., & Johansen-Berg, H. (2009). Training induces changes in white-matter architecture. Nature Neuroscience, 12(11), 1370–1371.  https://doi.org/10.1038/nn.2412.CrossRefPubMedPubMedCentralGoogle Scholar
  82. Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275, 1593–1599.CrossRefGoogle Scholar
  83. Scudder, M. R., Drollette, E. S., Pontifex, M. B., & Hillman, C. H. (2012). Neuroelectric indices of goal maintenance following a single bout of physical activity. Biological Psychology, 89(2), 528–531.  https://doi.org/10.1016/j.biopsycho.2011.12.009.CrossRefPubMedGoogle Scholar
  84. Sibley, B. A., & Etnier, J. L. (2003). The relationship between physical activity and cognition in children: A meta-analysis. Pediatric Exercise Science, 15(3), 243–256.  https://doi.org/10.1123/pes.15.3.243.CrossRefGoogle Scholar
  85. Spalding, K. L., Bergmann, O., Alkass, K., Bernard, S., Salehpour, M., Huttner, H. B., et al. (2013). Dynamics of hippocampal neurogenesis in adult humans. Cell, 153(6), 1219–1227.  https://doi.org/10.1016/j.cell.2013.05.002.CrossRefPubMedPubMedCentralGoogle Scholar
  86. Stephan, K. E., Friston, K. J. (2009). Functional connectivity. In Squire, L R. (Hrsg.), Encyclopedia of Neuroscience (S. 391–397). New York: Elsevier.Google Scholar
  87. Strobach, T., Salminen, T., Karbach, J., & Schubert, T. (2014). Practice-related optimization and transfer of executive functions: A general review and a specific realization of their mechanisms in dual tasks. Psychological Research, 78(6), 836–851.  https://doi.org/10.1007/s00426-014-0563-7.CrossRefPubMedGoogle Scholar
  88. Stuphorn, V. (2015). The role of supplementary eye field in goal-directed behavior. Journal of Physiology, 109(1), 118–128.  https://doi.org/10.1016/j.jphysparis.2015.02.002.CrossRefPubMedGoogle Scholar
  89. Swinnen, S. P. (2002). Intermanual coordination: From behavioural principles to neural-network interactions. Nature Reviews Neuroscience, 3, 348.  https://doi.org/10.1038/nrn807.CrossRefPubMedGoogle Scholar
  90. Szameitat, A. J., Schubert, T., Muller, K., & Von Cramon, D. Y. (2002). Localization of executive functions in dual-task performance with fMRI. Journal of Cognitive Neuroscience, 14(8), 1184–1199.  https://doi.org/10.1162/089892902760807195.CrossRefPubMedGoogle Scholar
  91. Szameitat, A. J., et al. (2011). „How to test for dual-task-specific effects in brain imaging studies: An evaluation of potential analysis methods.“ NeuroImage 54(3), 1765–1773.Google Scholar
  92. Taatgen, N. A., Juvina, I., Schipper, M., Borst, J. P., & Martens, S. (2009). Too much control can hurt: A threaded cognition model of the attentional blink. Cognitive Psychology, 59(1), 1–29.  https://doi.org/10.1016/j.cogpsych.2008.12.002.CrossRefPubMedGoogle Scholar
  93. Taubert, M., Lohmann, G., Margulies, D. S., Villringer, A., & Ragert, P. (2011). Long-term effects of motor training on resting-state networks and underlying brain structure. Neuroimage, 57(4), 1492–1498.  https://doi.org/10.1016/j.neuroimage.2011.05.078.CrossRefPubMedGoogle Scholar
  94. Timmann-Braun, D., & Maschke, M. (2003). Das Kleinhirn ganz groß: Über den wichtigsten Zuarbeiter des Großhirns. Essener Unikate, 22, 18–29.Google Scholar
  95. Tomporowski, P. D. (2003). Effects of acute bouts of exercise on cognition. Acta Psychologica, 112(3), 297–324.CrossRefGoogle Scholar
  96. Toni, I., Rowe, J., Stephan, K. E., & Passingham, R. E. (2002). Changes of cortico-striatal effective connectivity during visuomotor learning. Cerebral Cortex, 12(10), 1040–1047.CrossRefGoogle Scholar
  97. Vahdat, S., Darainy, M., Milner, T. E., & Ostry, D. J. (2011). Functionally specific changes in resting-state sensorimotor networks after motor learning. Journal of Neuroscience, 31(47), 16907–16915.  https://doi.org/10.1523/jneurosci.2737-11.2011.CrossRefPubMedGoogle Scholar
  98. van Impe, A., Coxon, J. P., Goble, D. J., Wenderoth, N., & Swinnen, S. P. (2011). Age-related changes in brain activation underlying single- and dual-task performance: Visuomanual drawing and mental arithmetic. Neuropsychologia, 49(9), 2400–2409.  https://doi.org/10.1016/j.neuropsychologia.2011.04.016.CrossRefPubMedGoogle Scholar
  99. Voelcker-Rehage, C. (2008). Motor-skill learning in older adults – A review of studies on age-related differences. European Review of Aging and Physical Activity, 5(1), 5–16.  https://doi.org/10.1007/s11556-008-0030-9.CrossRefGoogle Scholar
  100. Voelcker-Rehage, C., & Niemann, C. (2013). Structural and functional brain changes related to different types of physical activity across the life span. Neuroscience & Biobehavioral Reviews, 37(9 Pt B), 2268–2295.  https://doi.org/10.1016/j.neubiorev.2013.01.028.CrossRefGoogle Scholar
  101. Voelcker-Rehage, C., Godde, B., & Staudinger, U. M. (2011). Cardiovascular and coordination training differentially improve cognitive performance and neural processing in older adults. Frontiers in Human Neuroscience, 5, 26.  https://doi.org/10.3389/fnhum.2011.00026.CrossRefPubMedPubMedCentralGoogle Scholar
  102. Weinrich, M., & Wise, S. P. (1982). The premotor cortex of the monkey. Journal of Neuroscience, 2(9), 1329–1345.CrossRefGoogle Scholar
  103. Wickens, C. D. (2002). Multiple resources and performance prediction. Theoretical Issues in Ergonomics Science, 3(2), 159–177.CrossRefGoogle Scholar
  104. Wolpert, D. M., Miall, R. C., & Kawato, M. (1998). Internal models in the cerebellum. Trends in Cognitive Sciences, 2(9), 338–347.CrossRefGoogle Scholar
  105. Woollacott, M., & Shumway-Cook, A. (2002). Attention and the control of posture and gait: A review of an emerging area of research. Gait Posture, 16(1), 1–14.CrossRefGoogle Scholar
  106. Xiong, J., Ma, L., Wang, B., Narayana, S., Duff, E. P., Egan, G. F., & Fox, P. T. (2009). Long-term motor training induced changes in regional cerebral blood flow in both task and resting states. Neuroimage, 45(1), 75–82.  https://doi.org/10.1016/j.neuroimage.2008.11.016.CrossRefPubMedGoogle Scholar
  107. Yerkes, R. M., & Dodson, J. D. (1908). The relation of strength of stimulus to rapidity of habit-formation. Journal of Comparative Neurology and Psychology, 18(5), 459–482.  https://doi.org/10.1002/cne.920180503.CrossRefGoogle Scholar
  108. Yogev-Seligmann, G., Hausdorff, J. M., & Giladi, N. (2008). The role of executive function and attention in gait. Movement Disorders, 23(3), 329–342.  https://doi.org/10.1002/mds.21720. (Quiz 472).CrossRefPubMedGoogle Scholar
  109. Zilles, K., Schlaug, G., Geyer, S., Luppino, G., Matelli, M., Qü, M., et al. (1996). Anatomy and transmitter receptors of the supplementary motor areas in the human and nonhuman primate brain. Advances in Neurology, 70, 29–43.PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2020

Authors and Affiliations

  1. 1.Institut für SportwissenschaftWestfälische Wilhelms-Universität MünsterMünsterDeutschland
  2. 2.Institut für Angewandte BewegungswissenschaftenTechnische Universität ChemnitzChemnitzDeutschland

Personalised recommendations