Advertisement

Vaskuläre Erkrankungen

  • A. AngermaierEmail author
  • R. RehmannEmail author
  • M. KitzrowEmail author

Zusammenfassung

Vaskuläre Erkrankungen gehören zu den häufigsten Krankheitsentitäten in der Neurologie. Herausragend ist dabei der ischämische Schlaganfall – nicht zuletzt aufgrund neuerer therapeutischer Entwicklungen. Dieses Kapitel gibt einen Überblick über die pathologischen Prozesse im Rahmen des ischämischen Schlaganfalls und geht darüber hinaus auch auf intrazerebrale Blutungen bzw. subarachnoidale Blutungen ein. Es werden die grundlegenden Mechanismen zur Regulation des zerebralen Blutflusses dargestellt. Zusätzlich wird auf die Dynamik intrakranieller Druckveränderungen eingegangen. Des Weiteren werden die häufigen Komplikationen nach akut aufgetretenen neurovaskulären Erkrankungen besprochen und deren pathophysiologischen Grundlagen erörtert.

Literatur

Literatur zu Abschn. 1.1

  1. Aikawa M, Libby P (2004) The vulnerable atherosclerotic plaque. Cardiovasc Pathol 13:125–138. doi:10.1016/S1054–8807(04)00004–3
  2. Ainslie PN, Duffin J (2009) Integration of cerebrovascular CO2; reactivity and chemoreflex control of breathing: mechanisms of regulation, measurement, and interpretation. Am J Physiol Regul Integr Comp Physiol 296:R1473. doi:10.1152/ajpregu.91008.2008PubMedGoogle Scholar
  3. Al-Ali F, Perry BC (2013) Spontaneous cervical artery dissection: the borgess classification. Frontiers Neur 4:133. doi:10.3389/fneur.2013.00133
  4. Berlit P (Hrsg) (2014) Basiswissen Neurologie. Springer, Berlin Heidelberg New YorkGoogle Scholar
  5. Charidimou A, Boulouis G, Gurol ME, Ayata C, Bacskai BJ, Frosch MP, Viswanathan A, Greenberg SM (2017) Emerging concepts in sporadic cerebral amyloid angiopathy. Brain doi:10.1093/brain/awx047PubMedPubMedCentralGoogle Scholar
  6. Chen H, Yoshioka H, Kim GS, Jung JE, Okami N, Sakata H, Maier CM, Narasimhan P, Goeders CE, Chan PH (2011) Oxidative stress in ischemic brain damage: mechanisms of cell death and potential molecular targets for neuroprotection. Antioxidants Redox Signaling 14:1505–1517. doi:10.1089/ars.2010.3576Google Scholar
  7. Debette S (2014) Pathophysiology and risk factors of cervical artery dissection: what have we learnt from large hospital-based cohorts? Curr Opinion Neurol 27:20–28. doi:10.1097/WCO.0000000000000056PubMedGoogle Scholar
  8. Del Sette M, Eliasziw M, Streifler JY, Hachinski VC, Fox AJ, Barnett HJ (2000) Internal borderzone infarction: a marker for severe stenosis in patients with symptomatic internal carotid artery disease. For the North American Symptomatic Carotid Endarterectomy (NASCET) Group. Stroke 31:631–636PubMedGoogle Scholar
  9. Dichgans M (2007) Genetics of ischaemic stroke. Lancet Neurol 6:149–161. doi:10.1016/S1474–4422(07)70028–5
  10. Dirnagl U, Iadecola C, Moskowitz MA (1999) Pathobiology of ischaemic stroke; An integrated view. Trends in Neurosciences 22:391–397. doi:10.1016/S0166–2236(99)01401–0
  11. Dohmen C, Sakowitz OW, Fabricius M, Bosche B, Reithmeier T, Ernestus R-I, Brinker G, Dreier JP, Woitzik J, Strong AJ, Graf R (2008) Spreading depolarizations occur in human ischemic stroke with high incidence. Ann Neurol 63:720–728. doi:10.1002/ana.21390PubMedGoogle Scholar
  12. Doyle KP, Simon RP, Stenzel-Poore MP (2008) Mechanisms of ischemic brain damage. Neuropharmacology 55:310–318. doi:10.1016/j.neuropharm.2008.01.005PubMedPubMedCentralGoogle Scholar
  13. Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95. doi:10.1152/physrev.00018.2001PubMedGoogle Scholar
  14. Fann DY-W, Lee S-Y, Manzanero S, Chunduri P, Sobey CG, Arumugam TV (2013) Pathogenesis of acute stroke and the role of inflammasomes. Ageing Res Rev 12:941–966. doi:10.1016/j.arr.2013.09.004PubMedGoogle Scholar
  15. Faxon DP, Fuster V, Libby P, Beckman JA, Hiatt WR, Thompson RW, Topper JN, Annex BH, Rundback JH, Fabunmi RP, Robertson RM, Loscalzo J (2004) Atherosclerotic Vascular Disease Conference: Writing Group III: pathophysiology. Circulation 109:2617–2625. doi:10.1161/01.CIR.0000128520.37674.EFPubMedGoogle Scholar
  16. Filosa JA, Morrison HW, Iddings JA, Du W, Kim KJ (2016) Beyond neurovascular coupling, role of astrocytes in the regulation of vascular tone. Neuroscience 323: 96–109. doi:10.1016/j.neuroscience.2015.03.064PubMedGoogle Scholar
  17. Gryglas A, Smigiel R (2017) Migraine and Stroke: What’s the Link? What to Do? Curr Neurol Neurosci Rep 17:22. doi:10.1007/s11910–017–0729-y
  18. Hartings JA, Shuttleworth CW, Kirov SA et al. (2016) The continuum of spreading depolarizations in acute cortical lesion development: Examining Leao’s legacy. J Cerebral Blood Flow Metab . doi:10.1177/0271678X16654495Google Scholar
  19. Hossmann KA (1994) Viability thresholds and the penumbra of focal ischemia. Ann Neurol 36:557–565PubMedGoogle Scholar
  20. Hossmann KA, Heiss WD (op. 2010) Neuropathology and pathophysiology of stroke. In: Brainin M, Heiss WD, Heiss S (Hrsg) Textbook of stroke medicine. Cambridge University Press, Cambridge, S 1–27Google Scholar
  21. Huang J, Upadhyay UM, Tamargo RJ (2006) Inflammation in stroke and focal cerebral ischemia. Surg Neurol 66:232–245. doi:10.1016/j.surneu.2005.12.028PubMedGoogle Scholar
  22. Keith J, Gao F-Q, Noor R, Kiss A, Balasubramaniam G, Au K, Rogaeva E, Masellis M, Black SE (2017) Collagenosis of the Deep Medullary Veins: An Underrecognized Pathologic Correlate of White Matter Hyperintensities and Periventricular Infarction? J Neuropathol Exp Neurol 76:299–312. doi:10.1093/jnen/nlx009Google Scholar
  23. Li L, Yiin GS, Geraghty OC, Schulz UG, Kuker W, Mehta Z, Rothwell PM (2015) Incidence, outcome, risk factors, and long-term prognosis of cryptogenic transient ischaemic attack and ischaemic stroke; A population-based study. Lancet Neurol 14:903–913. doi:10.1016/S1474–4422(15)00132–5
  24. Marsh BJ, Stenzel-Poore MP (2008) Toll-like receptors: novel pharmacological targets for the treatment of neurological diseases. Curr Opin Pharmacol 8:8–13. doi:10.1016/j.coph.2007.09.009PubMedGoogle Scholar
  25. McBryde FD, Malpas SC, Paton JFR (2017) Intracranial mechanisms for preserving brain blood flow in health and disease. Acta Physiologica (Oxford, England) 219:274–287. doi:10.1111/apha.12706PubMedGoogle Scholar
  26. McDonald JW, Bhattacharyya T, Sensi SL, Lobner D, Ying HS, Canzoniero LM, Choi DW (1998) Extracellular acidity potentiates AMPA receptor-mediated cortical neuronal death. J Neurosci 18:6290–6299PubMedGoogle Scholar
  27. Meisel C, Schwab JM, Prass K, Meisel A, Dirnagl U (2005) Central nervous system injury-induced immune deficiency syndrome. Nature reviews. Neuroscience 6:775–786. doi:10.1038/nrn1765PubMedGoogle Scholar
  28. Momjian-Mayor I, Baron J-C (2005) The pathophysiology of watershed infarction in internal carotid artery disease; Review of cerebral perfusion studies. Stroke 36:567–577. doi:10.1161/01.STR.0000155727.82242.e1PubMedGoogle Scholar
  29. Muir KW, Buchan AM, Kummer R von, Rother J, Baron J-C (2006) Imaging of acute stroke. Lancet Neurol 5:755–768PubMedGoogle Scholar
  30. Nilsson J, Hansson GK (2015) The changing face of atherosclerotic plaque inflammation. J Intern Med 278:430–432. doi:10.1111/joim.12403PubMedGoogle Scholar
  31. Norenberg MD, Rao KVR (2007) The mitochondrial permeability transition in neurologic disease. Neurochem Int 50:983–997. doi:10.1016/j.neuint.2007.02.008PubMedPubMedCentralGoogle Scholar
  32. Norrving B (op. 2010) Common causes of ischemic stroke. In: Brainin M, Heiss WD, Heiss S (Hrsg) Textbook of stroke medicine. Cambridge University Press, CambridgeGoogle Scholar
  33. Pantoni L (2002) Pathophysiology of age-related cerebral white matter changes. Cerebrovasc Dis (Basel, Switzerland) 13 Suppl 2:7–10PubMedGoogle Scholar
  34. Pantoni L (2010) Cerebral small vessel disease; From pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol 9:689–701. doi:10.1016/S1474–4422(10)70104–6
  35. Prass K, Meisel C, Hoflich C, Braun J, Halle E, Wolf T, Ruscher K, Victorov IV, Priller J, Dirnagl U, Volk H-D, Meisel A (2003) Stroke-induced immunodeficiency promotes spontaneous bacterial infections and is mediated by sympathetic activation reversal by poststroke T helper cell type 1-like immunostimulation. J Exp Med 198:725–736. doi:10.1084/jem.20021098PubMedPubMedCentralGoogle Scholar
  36. Schievink WI (2001) Spontaneous dissection of the carotid and vertebral arteries. New Engl J Med 344:898–906. doi:10.1056/New Engl J Med200103223441206
  37. Shin HK, Dunn AK, Jones PB, Boas DA, Moskowitz MA, Ayata C (2006) Vasoconstrictive neurovascular coupling during focal ischemic depolarizations. J Cerebral Blood Flow Metab 26:1018–1030. doi:10.1038/sj.jcbfm.9600252Google Scholar
  38. Singhal AB, Biller J, Elkind MS, Fullerton HJ, Jauch EC, Kittner SJ, Levine DA, Levine SR (2013) Recognition and management of stroke in young adults and adolescents. Neurology 81:1089–1097. doi:10.1212/WNL.0b013e3182a4a451PubMedPubMedCentralGoogle Scholar
  39. Stol M, Hamann GF (2002) Die zerebrovaskuläre Reservekapazität. Nervenarzt 73:711–718. doi:10.1007/s00115–002–1313–4
  40. Strong AJ, Anderson PJ, Watts HR, Virley DJ, Lloyd A, Irving EA, Nagafuji T, Ninomiya M, Nakamura H, Dunn AK, Graf R (2007) Peri-infarct depolarizations lead to loss of perfusion in ischaemic gyrencephalic cerebral cortex. Brain 130:995–1008. doi:10.1093/brain/awl392Google Scholar
  41. Vertinsky AT, Schwartz NE, Fischbein NJ, Rosenberg J, Albers GW, Zaharchuk G (2008) Comparison of multidetector CT angiography and MR imaging of cervical artery dissection. AJNR. American journal of neuroradiology 29:1753–1760. doi:10.3174/ajnr.A1189PubMedGoogle Scholar
  42. Vidale S, Consoli A, Arnaboldi M, Consoli D (2017) Postischemic Inflammation in Acute Stroke. J Clin Neurol (Seoul, Korea) 13:1–9. doi:10.3988/jcn.2017.13.1.1PubMedGoogle Scholar
  43. Volker W, Dittrich R, Grewe S, Nassenstein I, Csiba L, Herczeg L, Borsay BA, Robenek H, Kuhlenbaumer G, Ringelstein EB (2011) The outer arterial wall layers are primarily affected in spontaneous cervical artery dissection. Neurology 76:1463–1471. doi:10.1212/WNL.0b013e318217e71cPubMedGoogle Scholar
  44. Willeit J, Kiechl S (2000) Biology of arterial atheroma. Cerebrovasc Dis (Basel, Switzerland) 10 Suppl 5:1–8PubMedGoogle Scholar

Literatur zu Abschn. 1.2

  1. Anderson CS et al. (2013) Rapid Blood-Pressure Lowering in Patients with Acute Intracerebral Hemorrhage. New England J Medicine 368: 2355–2365Google Scholar
  2. Bergström P et al. (2016) Amyloid precursor protein expression and processing are differentially regulated during cortical neuron differentiation. Sci Rep 6: 29200. doi: 10.1038/srep29200
  3. Boulouis G, Charidimou A, Greenberg SM (2016) Sporadic Cerebral Amyloid Angiopathy: Pathophysiology, Neuroimaging Features, and Clinical Implications. Semin Neurol 36: 233–243PubMedGoogle Scholar
  4. Charidimou A, Boulouis G, Gurol ME, Ayata C, Bacskai BJ, Frosch MP, Viswanathan A, Greenberg SM (2017) Emerging concepts in sporadic cerebral amyloid angiopathy. Brain 140 (7):1829-1850 ReviewPubMedPubMedCentralGoogle Scholar
  5. Charidimou A, Gang Q Werring DJ (2012) Sporadic cerebral amyloid angiopathy revisited: recent insights into pathophysiology and clinical spectrum. J Neurol Neurosurg Psychiat 83: 124–137Google Scholar
  6. Etminan N, Rinkel GJ (2016) Unruptured intracranial aneurysms: development, rupture and preventive management. Nat Rev Neurol 12(12): 699–713PubMedGoogle Scholar
  7. Fisher CM (1971) Pathological observations in hypertensive cerebral hemorrhage. J Neuropathol Exp Neurol 30: 536–550PubMedGoogle Scholar
  8. Greenberg, S. M. et al. (1998) Association of apolipoprotein E epsilon2 and vasculopathy in cerebral amyloid angiopathy. Neurology 50: 961–965PubMedGoogle Scholar
  9. Hu X et al. (2016) Oxidative Stress in Intracerebral Hemorrhage: Sources, Mechanisms, and Therapeutic Targets. Oxid Med Cell Longev 3215391. doi: 10.1155/2016/3215391Google Scholar
  10. Katsu M et al. (2010) Hemoglobin-induced oxidative stress contributes to matrix metalloproteinase activation and blood-brain barrier dysfunction in vivo. J. Cereb. Blood Flow Metab 30: 1939–1950Google Scholar
  11. Lammie G (2002) A. Hypertensive cerebral small vessel disease and stroke. Brain Pathol. 12, 358–370Google Scholar
  12. Lim-Hing K, Rincon F (2017) Secondary Hematoma Expansion and Perihemorrhagic Edema after Intracerebral Hemorrhage: From Bench Work to Practical Aspects. Front Neurol Apr 7; ReviewGoogle Scholar
  13. Pantoni L (2010) Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol 9 (7): 689–701. ReviewPubMedGoogle Scholar
  14. Qureshi AI, Mendelow AD, Hanley DF (2009) Intracerebral haemorrhage. Lancet 373, 1632–1644Google Scholar
  15. Qureshi AI, Palesch YY, Martin R, Toyoda K, Yamamoto H, Wang Y, Wang Y, Hsu CY, Yoon BW, Steiner T, Butcher K, Hanley DF, Suarez JI (2014) Interpretation and Implementation of Intensive Blood Pressure Reduction in Acute Cerebral Hemorrhage Trial (INTERACT II). J Vasc Interv Neurol 7 (2): 34–40Google Scholar
  16. Rosenblum WI (2008) Fibrinoid necrosis of small brain arteries and arterioles and miliary aneurysms as causes of hypertensive hemorrhage: a critical reappraisal. Acta Neuropathol 116 (4): 361–9. doi: 10.1007/s00401–008–0416–9
  17. Schünke M, Schulte E, Schumacher U, Voll M, Wesker K (2006) Prometheus LernAtlas der Anatomie, Kopf und Neuroanatomie. Thieme, StuttgartGoogle Scholar
  18. Sun X Chen WD, Wang YD (2015) β-Amyloid: the key peptide in the pathogenesis of Alzheimer’s disease. Front Pharmacol 6: 221Google Scholar
  19. Wardlaw JM (2010) Blood-brain barrier and cerebral small vessel disease. J Neurol Sci 299: 66–71PubMedGoogle Scholar
  20. Weller RO, Subash M, Preston SD, Mazanti I, Carare RO (2008) Perivascular drainage of amyloid-beta peptides from the brain and its failure in cerebral amyloid angiopathy and Alzheimer’s disease. Brain Pathol 18 (2): 253–66Google Scholar
  21. Wu TY, Sharma G, Strbian D, Putaala J, Desmond PM, Tatlisumak T et al. (2017) Natural history of perihematomal edema and impact on outcome after intracerebral hemorrhage. Stroke 48 (4): 873–879PubMedGoogle Scholar
  22. Xi G Keep RF, Hoff JT (2006) Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol 5: 53–63PubMedGoogle Scholar

Literatur zu Abschn. 1.3

  1. Archavlis E, Nievas M (2013) Cerebral vasospasm: a review of current developments in drug therapy and research. J Pharm Technol Drug Res 2: 18Google Scholar
  2. Bosche B, Graf R, Ernestus R-I et al. (2010) Recurrent spreading depolarizations after subarachnoid hemorrhage decreases oxygen availability in human cerebral cortex. Ann Neurol 67: 607–617PubMedPubMedCentralGoogle Scholar
  3. Brandon A. Miller, Turan N, Chau M et al. (2014) Inflammation, vasospasm and brain Injury after subarachnoid hemorrhage. BioMed Research Int. 2014Google Scholar
  4. Cahill J, Cahill WJ, Calvert JW, Calvert JH, Zhang JH (2006) Mechanisms of early brain injury after subarachnoid hemorrhage. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab (11): 1341–53Google Scholar
  5. Chen S, Feng H, Sherchan P, Klebe D, Zhao G, Sun X et al. (2014) Controversies and evolving new mechanisms in subarachnoid hemorrhage. Prog Neurobiol 115: 64–91PubMedGoogle Scholar
  6. Chen S, Luo J, Reis C et al. (2017) Hydrocephalus after subarachnoid hemorrhage: pathophysiology, diagnosis, and treatment. BioMed Research Int 2017: 8584753. doi: 10.1155/2017/8584753Google Scholar
  7. Claassen J (2017) Spreading depolarization and acute ischaemia in subarachnoid haemorrhage: the role of mass depolarization waves. Brain 140; 2527–2529PubMedGoogle Scholar
  8. Cossu G, Messerer M, Oddo M et al. (2014) To look beyond vasospasm in aneurysmal subarachnoid haemorrhage. BioMed Research Int 2014: 628597. doi: 10.1155/2014/628597Google Scholar
  9. Dorsch N, King M (1994) A review of cerebral vasospasm in aneurysmal subarachnoid haemorrhage Part I: incidence and effects. J Clin Neurosci 1: 19–26PubMedGoogle Scholar
  10. Dreier J, Major S, Manning A et al. (2009) Cortical spreading ischaemia is a novel process involved in ischaemic damage in patients with aneurysmal subarachnoid haemorrhage. Brain 132;1866–1881PubMedPubMedCentralGoogle Scholar
  11. Edvinsson L (2009) Cerebrovascular endothelin-receptor upregulation in cerebral ischemia. Curr Vasc Pharmacol 7: 26–33PubMedGoogle Scholar
  12. Etminan N, Rinkel GJ (2016) Unruptured intracranial aneurysms: development, rupture and preventive management. Nat Rev Neurol 12 (12): 699–713PubMedGoogle Scholar
  13. Fassbender K, Hodapp B, Rossol S et al. (2000) Endothelin-1 in subarachnoid hemorrhage: An acute-phase-reactant produced by cerebrospinal-fluid leukocytes. Stroke 31: 2971–2975PubMedGoogle Scholar
  14. Fisher C, Roberson G, Ojemann R (1977) Cerebral vasospasm with ruptured saccular aneurysm - the clinical manifestations. Neurosurgery 1 (3): 245–248PubMedGoogle Scholar
  15. Friedrich V, Flores R, Sehba FA (2012) Cell death starts early after subarachnoid hemorrhage. Neurosci Lett 512 (1): 6–11PubMedPubMedCentralGoogle Scholar
  16. Greitz D (2002) On the active vascular absorption of plasma proteins from tissue: rethinking the role of the lymphatic system. Med Hypoth 59: 696–702PubMedGoogle Scholar
  17. Greitz D (2004) Radiological assessment of hydrocephalus: new theories and implications for therapy. Neurosurg Rev 27: 145–165Google Scholar
  18. Greitz D (2004) The hydrodynamic hypothesis versus the bulk flow hypothesis. Neurosurg Rev 27: 299–300Google Scholar
  19. Hacke W (Hrsg) (2016) Neurologie, 14. Auflage. Springer, Berlin Heidelberg New YorkGoogle Scholar
  20. Hartings J, York J, Carroll C et al. (2017) Subarachnoid blood acutely induces spreading depolarizations and early cortical infarction. Brain 140: 2673–2690PubMedPubMedCentralGoogle Scholar
  21. Kikkawa Y, Matsuo S, Kameda K et al. (2012) Mechanisms underlying potentiation of endothelin-1-induced myofilament Ca (2+)-sensitization after subarachnoid hemorrhage. J Cereb Blood Flow Metab 32: 341–52Google Scholar
  22. Krishnamurthy S, Li J (2014) New concepts in the pathogenesis of hydrocephalus. Transl Pediatr 3 (3): 185–194Google Scholar
  23. Kusaka G, Ishikawa M, Nanda A, Granger DN, Zhang JH (2004) Signaling Pathways for Early Brain Injury after Subarachnoid Hemorrhage. J Cereb Blood Flow Metab 24 (8): 916–25Google Scholar
  24. Lauritzen M, Dreier J, Fabricius M et al. (2011) Clinical relevance of cortical spreading depression in neurological disorders: migraine, malignant stroke, subarachnoid and intracranial hemorrhage, and traumatic brain injury. J Cereb Blood Flow Metab 31: 7–35Google Scholar
  25. Lin C-L, Dumont A, Zhang J et al. (2014) Cerebral vasospasm after aneurysmal subarachnoid hemorrhage: mechanism and therapies. BioMed Research Int 2014: 679014. doi: 10.1155/2014/679014Google Scholar
  26. Macdonald L, Kassell N, Mayer S et al. (2008) Clazosentan to overcome neurological ischemia and infarction occurring after subarachnoid hemorrhage (CONSCIOUS-1): randomized, double-blind, placebo-controlled phase 2 dose-finding trial. Stroke 39 (11): 3015–3021PubMedGoogle Scholar
  27. Macdonald RL, Schweizer TA (2017) Spontaneous subarachnoid haemorrhage. Lancet Lond Engl 389 (10069): 655–66Google Scholar
  28. Meng H, Tutino VM, Xiang J, Siddiqui A (2014) High WSS or low WSS? Complex interactions of hemodynamics with intracranial aneurysm initiation, growth, and rupture: toward a unifying hypothesis. AJNR Am J Neuroradiol 35 (7): 1254–62PubMedGoogle Scholar
  29. Miller BA, Turan N, Chau M, Pradilla G (2014) Inflammation, vasospasm, and brain injury after subarachnoid hemorrhage. BioMed Res Int 2014: 384342Google Scholar
  30. Munoz-Guilléna N, León-Lópeza R, Túnez-Finanab I et al. (2013) From vasospasm to early brain injury: New frontiers in subarachnoid haemorrhage research. Neurologia 28 (5): 309–316Google Scholar
  31. Petridis AK, Kamp MA, Cornelius JF, Beez T, Beseoglu K, Turowski B et al. (2017) Aneurysmal Subarachnoid Hemorrhage. Dtsch Ärztebl Int 114 (13): 226–36Google Scholar
  32. Pluta R (2008) Dysfunction of nitric-oxide-synthases as a cause and therapeutic target in delayed cerebral vasospasm after SAH. Acta Neurochir Suppl 104: 139–47Google Scholar
  33. Prunell G, Svendgaard N, Alkass K et al. (2005) Inflammation in the brain after experimental subarachnoid hemorrhage. Neurosurgery 56: 1082–1092Google Scholar
  34. Rainov N, Weise J, Burkert W (2000) Transcranial doppler sonography in adult hydrocephalic patients. Neurosurg Rev 23: 34–38PubMedGoogle Scholar
  35. Rowland M, Hadjipavlou G, Kelly M et al. (2012) Delayed cerebral ischaemia after subarachnoid haemorrhage: looking beyond vasospasm. Br J Anaesth 109 (3): 315–29PubMedGoogle Scholar
  36. Schmieder K, Möller F, Engelhardt M, Scholz M, Schregel W, Christmann A et al. (2006) Dynamic cerebral autoregulation in patients with ruptured and unruptured aneurysms after induction of general anesthesia. Zentralbl Neurochir 67 (2): 81–7PubMedGoogle Scholar
  37. Serrone JC, Maekawa H, Tjahjadi M, Hernesniemi J (2015) Aneurysmal subarachnoid hemorrhage: pathobiology, current treatment and future directions. Expert Rev Neurother 15 (4): 367–80PubMedGoogle Scholar
  38. Stephensen H, Tisell M, Wikkelsö C (2002) There is no transmantle pressure gradient in communicating or noncommunicating hydrocephalus. Neurosurgery 50: 763–771PubMedGoogle Scholar
  39. van Lieshout JH, Dibué-Adjei M, Cornelius JF, Slotty PJ, Schneider T, Restin T et al. (2017) An introduction to the pathophysiology of aneurysmal subarachnoid hemorrhage. Neurosurgery. doi: 10.1007/s10143–017–0827-y
  40. Winkler M, Chassidim Y, Lublinsky et al. (2012) Impaired neurovascular coupling to ictal epileptic activity and spreading depolarization in a patient with subarachnoid hemorrhage: possible link to blood-brain barrier dysfunction. Epilepsia 53: 22–30PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Klinik und Poliklinik für NeurologieUniversitätsmedizin GreifswaldGreifswaldDeutschland
  2. 2.Berufsgenossenschaftliche Universitätsklinik Bergmannsheil gGmbHRuhr-Universität BochumBochumDeutschland
  3. 3.Klinik für NeurologieAgaplesion Bethesda Krankenhaus WuppertalWuppertalDeutschland

Personalised recommendations