Advertisement

Die Algen

  • Lothar Krienitz
Chapter

Zusammenfassung

Die Algen sind eine Gruppe primitiver Lebewesen mit einer verwirrenden Vielfalt. In den nährstoffreichen, salinen Feuchtgebieten, die vom Zwergflamingo besiedelt werden, entfalten sie eine ungewöhnlich hohe photosynthetische Aktivität und bilden das Futter dieses Nahrungsspezialisten. Der Zwergflamingo ernährt sich bevorzugt von dem Cyanobakterium Arthrospira, das tonnenweise in den Sodaseen Ostafrikas wächst. Doch dieser starke mikroskopische Organismus kann nicht überall gedeihen und muss sich der Konkurrenz anderer Mikrophyten erwehren. Oft sind diese Konkurrenten ungeeignet als Flamingonahrung. Winzigste Grün- und Gelbgrünalgen sind zu klein, um von den Filterlamellen der Vögel aufgenommen zu werden. Andererseits können schleimige Cyanobakterien in großen Kolonien die Werkzeuge zur Nahrungsaufnahme verstopfen. Alternativ können Kieselalgen von den Zwergflamingos verzehrt werden, jedoch ist die Energie, die diese Algen liefern, nicht so hoch, wie jene von Arthrospira.

Literatur

  1. Andersen RA, Brett RW, Potter D, Sexton JP (1998) Phylogeny of the Eustigmatophyceae based upon 18S rRNA, with emphasis on Nannochloropsis. Protist 149:61–74CrossRefPubMedGoogle Scholar
  2. Ballot A, Dadheech PK, Krienitz L (2004a) Phylogenetic relationship of Arthrospira, Phormidium and Spirulina strains from Kenyan and Indian waterbodies. Algol Stud 113:37–56CrossRefGoogle Scholar
  3. Beijerinck MW (1890) Culturversuche mit Zoochlorellen, Lichenengonidien und anderen niederen Algen I-III. Bot Ztg 48:726–740Google Scholar
  4. Borowitzka MA, Moheimani NR (2013) Open pond culture systems. In: Borowitzka MA, Moheimani NR (Hrsg) Algae for biofuels and energy. Springer, Dordrecht, S 133–152CrossRefGoogle Scholar
  5. Bosma R, De Vree JH, Slegers PM, Janssen M, Wijffels RH, Barbosa MJ (2014) Design and construction of the microalgal pilot facility AlgaePARC. Algal Res 6:160–169CrossRefGoogle Scholar
  6. Chernogor L, Denikina N, Kondratov I, Solovarov I, Khanaev I, Belikov S, Ehrlich P (2013) Isolation and identification of the microalgal symbiont from primmorphs of the endemic freshwater sponge Lubomirskia baicalensis (Lubomirskiidae, Porifera). Eur J Phycol 48:497–508CrossRefGoogle Scholar
  7. Chorus I (2001) Cyanotoxins: occurrence, causes, consequences. Springer, HeidelbergCrossRefGoogle Scholar
  8. Dadheech PK, Mahmoud H, Kotut K, Krienitz L (2012) Haloleptolyngbya alcalis gen. et sp. nov., a filamentous cyanobacterium from the soda lake Nakuru, Kenya. Hydrobiologia 691:269–283CrossRefGoogle Scholar
  9. Dadheech PK, Glöckner G, Casper P, Kotut K, Mazzoni CJ, Mbedi S, Krienitz L (2013a) Cyanobacterial diversity in the hot spring, pelagic and benthic habitats of a tropical soda lake. FEMS Microbiol Ecol 85:389–401CrossRefPubMedGoogle Scholar
  10. Dadheech PK, Casamatta DA, Casper P, Krienitz L (2013b) Phormidium etoshii sp. nov. (Oscillatoriales, Cyanobacteria) described from the Etosha Pan, Namibia, based on morphological, molecular and ecological features. Fottea 13:235–244CrossRefGoogle Scholar
  11. Fawley KP, Fawley MW (2007) Observations on the diversity and ecology of freshwater Nannochloropsis (Eustigmatophyceae), with descriptions of new taxa. Protist 158:325–336CrossRefPubMedGoogle Scholar
  12. Ferroni L, Baldisserotto C, Pantaleoni L, Billi P, Fasulo MP, Pancaldi S (2007) High salinity alters chloroplast morpho-physiology in a freshwater Kirchneriella species (Selenastraceae) from Ethiopian Lake Awassa. Am J Bot 94:1972–1983CrossRefPubMedGoogle Scholar
  13. Fietz S, Bleiss W, Hepperle D, Koppitz H, Krienitz L, Nicklisch A (2005) First record of Nannochloropsis limnetica (Eustigmatophyceae) in the autotrophic picoplankton from Lake Baikal. J Phycol 41:780–790CrossRefGoogle Scholar
  14. Jochimsen EM (1998) Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil. New Engl J Med 339:139Google Scholar
  15. Kaggwa MN, Burian A, Oduor SO, Schagerl M (2013b) Ecomorphological variability of Arthrospira fusiformis (Cyanoprokaryota) in African soda lakes. MicrobiologyOpen 2:881–891PubMedPubMedCentralGoogle Scholar
  16. Komárek J, Anagnostidis K (2005) Cyanoprokaryota 2. Oscillatoriales In: Büdel B, Gärtner G, Krienitz L, Schagerl M (Hrsg) Süßwasserflora von Mitteleuropa, Bd. 19/2, S 1–759, Springer Spektrum, Berlin.Google Scholar
  17. Komárek J, Kastovsky J, Mares J, Johansen JR (2014) Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia 86:295–335Google Scholar
  18. Krienitz L (2009) Die Nahrungsprobleme des Zwergflamingos. BiuZ 39:258–266CrossRefGoogle Scholar
  19. Krienitz L, Hepperle D, Stich H-B, Weiler W (2000) Nannochloropsis limnetica (Eustigmatophyceae), a new species of picoplankton from freshwater. Phycologia 39:219–227CrossRefGoogle Scholar
  20. Krienitz L, Ballot A, Casper P, Codd GA, Kotut K, Metcalf JS, Morrison LF, Pflugmacher S, Wiegand C (2005) Contribution of toxic cyanobacteria to massive deaths of lesser flamingos at saline-alkaline lakes of Kenya. Verhand Int Verein Limnol 29:783–786Google Scholar
  21. Krienitz L, Bock C, Dadheech PK, Pröschold T (2011) Taxonomic reassessment of the genus Mychonastes (Chlorophyceae, Chlorophyta) including the description of eight new species. Phycologia 50:89–106CrossRefGoogle Scholar
  22. Krienitz L, Bock C, Kotut K, Luo W (2012a) Picocystis salinarum (Chlorophyta) in saline lakes and hot springs of East Africa. Phycologia 51:22–32CrossRefGoogle Scholar
  23. Krienitz L, Bock C, Kotut K, Pröschold T (2012b) Genotypic diversity of Dictyosphaerium morphospecies (Chlorellaceae, Trebouxiophyceae) in African inland waters, including the description of four new genera. Fottea 12:231–253CrossRefGoogle Scholar
  24. Krienitz L, Dadheech PK, Kotut K (2013a) Mass developments of the cyanobacteria Anabaenopsis and Cyanospira (Nostocales) in the soda lakes of Kenya: ecological and systematic implications. Hydrobiologia 703:79–93CrossRefGoogle Scholar
  25. Krienitz L, Dadheech PK, Kotut K (2013b) Mass developments of a small sized ecotype of Arthrospira fusiformis in Lake Oloidien, Kenya, a new feeding ground for Lesser Flamingos in East Africa. Fottea 13:215–225CrossRefGoogle Scholar
  26. Krienitz L, Huss VAR, Bock C (2015) Chlorella: 125 years of the green survivalist. Trends Plant Sci 20:67–69CrossRefPubMedGoogle Scholar
  27. Krienitz L, Krienitz D, Dadheech PK, Hübener T, Kotut K, Luo W, Teubner K, Versfeld WD (2016a) Algal food for Lesser Flamingos: a stocktaking. Hydrobiologia 775:21–50CrossRefGoogle Scholar
  28. Krienitz L, Bock C, Dadheech PK, Kotut K, Luo W, Schagerl M (2016c) An underexplored resource for biotechnology: selected microphytes of East African soda lakes and adjacent waters. In: Schagerl M (Hrsg) Soda Lakes of East Africa. Springer Nature, Berlin, 323–343Google Scholar
  29. Krienitz L, Wirth M (2006) The high content of polyunsaturated fatty acids in Nannochloropsis limnetica (Eustigmatophyceae) and its implication for food web interactions, freshwater aquaculture and biotechnology. Limnologica 36:204–210CrossRefGoogle Scholar
  30. Lewin RA, Krienitz L, Goericke R, Takeda H, Hepperle D (2000) Picocystis salinarum gen. et sp. nov. (Chlorophyta) – a new picoplanktonic green alga. Phycologia 39:560–565CrossRefGoogle Scholar
  31. Lugomela C, Pratap HB, Mgaya YD (2006) Cyanobacteria blooms – A possible cause of mass mortality of Lesser Flamingos in Lake Manyara and Lake Big Momela, Tanzania. Harmful Algae 5:534–541CrossRefGoogle Scholar
  32. Mazokopakis EE, Karefilakis CM, Tsartsalis AN, Milkas AN, Ganotakis ES (2008) Acute rhabdomyolysis caused by Spirulina (Arthrospira platensis). Phytomedicine 15:525–527CrossRefPubMedGoogle Scholar
  33. Moody JW, McGinty CM, Quinn JC (2014) Global evaluation of biofuel potential from microalgae. Proc Natl Acad Sci USA 111: 8691–8696CrossRefPubMedGoogle Scholar
  34. Oduor SO, Schagerl M (2007) Phytoplankton photosynthetic characteristics in three Kenyan Riftvalley saline-alkaline lakes. J Plankt Res 29:1041–1050CrossRefGoogle Scholar
  35. Pistocchi R, Pezzolesi L, Guerrini F, Vanucci S, Dell’Aversano C, Fattoruso E (2011) A review on the effects of environmental conditions on growth and toxin production of Ostreopsis ovata. Toxicon 57:421–428CrossRefPubMedGoogle Scholar
  36. Podola B, Li T, Melkonian M (2017) Porous substrate bioreactors: a paradigm shift in microalgal biotechnology. Trends Biotechnol 35:121–132CrossRefPubMedGoogle Scholar
  37. Rindi F (2007) Diversity, distribution and ecology of green algae and cyanobacteria in urban habitats. In: Seckbach J (Hrsg) Algae and cyanobacteria in extreme environments. Springer Berlin, Heidelberg, S 619–638CrossRefGoogle Scholar
  38. Schagerl M, Burian A (2016) The ecology of African soda lakes: driven by variable and extreme conditions. In: Schagerl M (Hrsg) Soda Lakes of East Africa. Springer Nature, Berlin, 295–320Google Scholar
  39. Schindler DW (1987) Detecting ecosystem responses to anthropogenic stress. Can J Fish Aquat Sci 44 Suppl.(1):6–25CrossRefGoogle Scholar
  40. Scuti K, Moro I (2016) Detection of the new cosmopolitan genus Thermoleptolyngbya (Cyanobacteria, Leptolyngbyaceae) using the 16S gene and 16S–23S ITS region. Mol Phyl Evol 105:15–35CrossRefGoogle Scholar
  41. Simpson PD, Van Valkenburg SD (1978) The ultrastructure of Mychonastes ruminatus gen. et sp. nov., a new member of the Chlorophyceae isolated from brackish water. Brit Phycol J 13:117–130CrossRefGoogle Scholar
  42. Talling JF (1987) The phytoplankton of Lake Victoria (East Africa). Arch Hydrobiol Beih Ergebn Limnol 25:229–256Google Scholar
  43. Tuite CH (2000) The distribution and density of Lesser Flamingos in East Africa in relation to food availability and productivity. Waterbirds (Spec Publ) 23:52–63CrossRefGoogle Scholar
  44. Turner DP, Ritts WD, Cohen WB, Gower ST, Running SW, Zhao MS, Costa MH, Kirschbaum AA, Ham JM, Saleska SR, Ahl DE (2006) Evaluation of MODIS NPP and GPP products across multiple biomes. Remote Sens Environ 102:282–292CrossRefGoogle Scholar
  45. Ullmann J (2015) Chlorulina spirelli: Erstes Gigafood der Welt entwickelt. Blog „Die Welt der Algen“, 01.04.2015. https://weltderalgen.wordpress.com. Zugegriffen: 3. Jan. 2018
  46. Vareschi E (1978) The ecology of Lake Nakuru (Kenya) I. Abundance and feeding of the Lesser Flamingo. Oecologia 32:11–35CrossRefPubMedGoogle Scholar
  47. Vareschi E (1982) The ecology of Lake Nakuru (Kenya) III. Abiotic factors and primary production. Oecologia 55:81–101CrossRefPubMedGoogle Scholar
  48. Vieira Vaz MGMV, Genuário DB, Andreote APD, Malone CFS, Sant’Anna CL, Barbiero L, Fiore MF (2015) Pantanalinema gen. nov. and Alkalinema gen. nov.: novel pseudoanabaenacean genera (Cyanobacteria) isolated from saline alkaline lakes. Int J Syst Evol Microbiol 65:298–308CrossRefPubMedGoogle Scholar
  49. Volkman JK, Brown MR, Dunstan GA, Jeffrey SW (1993) The biochemical composition of marine microalgae from the class Eustigmatophyceae. J Phycol 29:69–78CrossRefGoogle Scholar
  50. Wondie A, Mengistu S, Vijverberg J, Dejen E (2007) Seasonal variation in primary production of a large high altitude tropical lake (Lake Tana, Ethiopia): effects of nutrient availability and water transparency. Aquat Ecol 41:195–207CrossRefGoogle Scholar
  51. Yin C, Daoust K, Yong A, Tebbs EJ, Harper DM (2017) Tackling community undernutrition at Lake Bogoria, Kenya: the potential of Spirulina (Arthrospira fusiformis) as a food supplement. Afr J Food Agric Nutr Dev 17:11603–11615CrossRefGoogle Scholar
  52. Yuan C, Liu J, Fan Y, Ren X, Hu G, Li F (2011) Mychonastes afer HSO-3-1 as a potential new source of biodiesel. Biotechnol Biofuels 4:47CrossRefPubMedPubMedCentralGoogle Scholar
  53. Ziegler S, Brenner R (1998) Ecosystem metabolism in a subtropical, seagrass-dominated lagoon. Mar Ecol Prog Ser 173:1–12CrossRefGoogle Scholar
  54. Iwasa M, Yamamoto M, Tanaka Y, Kaito M, Adach Y (2002) Spirulina associated hepatotoxicity. Am J Gastroenterol 97:3212–3213CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  • Lothar Krienitz
    • 1
  1. 1.Abteilung Experimentelle LimnologieLeibniz Institut für Gewässerökologie und BinnenfischereiStechlinDeutschland

Personalised recommendations