Advertisement

Neuromuscular Differences Between Men and Women

  • Timothy C. Sell
  • Scott M. Lephart
Chapter

Abstract

Anterior cruciate ligament (ACL) injury prevention strategies have not always been successful. The identification of modifiable risk factors for injury is an important step in the injury prevention process. The gender differences observed in ACL injury rates pose an additional layer of complexity within this process; specifically, what are the sex-specific, modifiable risk factors for noncontact ACL injury? The identification of sex-specific risk factors for noncontact ACL injury facilitates the development of precise interventions. The purpose of this chapter is to outline the dynamic joint stability paradigm and provide an overview of the neuromuscular differences between men and women. The authors’ studies have demonstrated that female athletes have decreased proprioception, compensatory neuromuscular control patterns, enhanced static balance, and decreased lower extremity strength compared with male athletes. These differences have resulted in altered neuromuscular control as observed in the kinematic and kinetic characteristics of the knee during dynamic tasks. Injury prevention and performance optimization must account for these differences, with specificity of training included to reduce the incidence of these debilitating ACL injuries.

Keywords

Anterior cruciate ligament Neuromuscular control Proprioception Balance Dynamic postural stability Gender differences Sex differences Biomechanics Electromyographic Functional joint stability Knee 

References

  1. 1.
    Hootman JM, Dick R, Agel J (2007) Epidemiology of collegiate injuries for 15 sports: summary and recommendations for injury prevention initiatives. J Athl Train 42(2):311–319PubMedPubMedCentralGoogle Scholar
  2. 2.
    Swenson DM, Collins CL, Best TM, Flanigan DC, Fields SK, Comstock RD (2013) Epidemiology of knee injuries among U.S. high school athletes, 2005/2006–2010/2011. Med Sci Sports Exerc 45(3):462–469.  https://doi.org/10.1249/MSS.0b013e318277acca CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Ajuied A, Wong F, Smith C, Norris M, Earnshaw P, Back D, Davies A (2014) Anterior cruciate ligament injury and radiologic progression of knee osteoarthritis: a systematic review and meta-analysis. Am J Sports Med 42(9):2242–2252.  https://doi.org/10.1177/0363546513508376 CrossRefPubMedGoogle Scholar
  4. 4.
    Lohmander LS, Englund PM, Dahl LL, Roos EM (2007) The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis. Am J Sports Med 35(10):1756–1769CrossRefPubMedGoogle Scholar
  5. 5.
    Lohmander LS, Ostenberg A, Englund M, Roos H (2004) High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury. Arthritis Rheum 50(10):3145–3152CrossRefPubMedGoogle Scholar
  6. 6.
    Agel J, Arendt EA, Bershadsky B (2005) Anterior cruciate ligament injury in National Collegiate Athletic Association Basketball and Soccer: a 13-year review. Am J Sports Med 33(4):524–531CrossRefPubMedGoogle Scholar
  7. 7.
    Arendt E, Dick R (1995) Knee injury patterns among men and women in collegiate basketball and soccer. NCAA data and review of literature. Am J Sports Med 23(6):694–701CrossRefPubMedGoogle Scholar
  8. 8.
    Stanley LE, Kerr ZY, Dompier TP, Padua DA (2016) Sex differences in the incidence of anterior cruciate ligament, medial collateral ligament, and meniscal injuries in collegiate and high school sports: 2009–2010 through 2013–2014. Am J Sports Med 44(6):1565–1572.  https://doi.org/10.1177/0363546516630927 CrossRefPubMedGoogle Scholar
  9. 9.
    Ardern CL, Webster KE, Taylor NF, Feller JA (2011) Return to sport following anterior cruciate ligament reconstruction surgery: a systematic review and meta-analysis of the state of play. Br J Sports Med 45(7):596–606.  https://doi.org/10.1136/bjsm.2010.076364 CrossRefPubMedGoogle Scholar
  10. 10.
    Donnell-Fink LA, Klara K, Collins JE, Yang HY, Goczalk MG, Katz JN, Losina E (2015) Effectiveness of knee injury and anterior cruciate ligament tear prevention programs: a meta-analysis. PLoS One 10(12):e0144063.  https://doi.org/10.1371/journal.pone.0144063 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Mascarenhas R, Cvetanovich GL, Sayegh ET, Verma NN, Cole BJ, Bush-Joseph C, Bach BR Jr (2015) Does double-bundle anterior cruciate ligament reconstruction improve postoperative knee stability compared with single-bundle techniques? A systematic review of overlapping meta-analyses. Arthroscopy 31(6):1185–1196.  https://doi.org/10.1016/j.arthro.2014.11.014 CrossRefPubMedGoogle Scholar
  12. 12.
    Zeng C, Gao SG, Li H, Yang T, Luo W, Li YS, Lei GH (2016) Autograft versus allograft in anterior cruciate ligament reconstruction: a meta-analysis of randomized controlled trials and systematic review of overlapping systematic reviews. Arthroscopy 32(1):153–163.e118.  https://doi.org/10.1016/j.arthro.2015.07.027 CrossRefPubMedGoogle Scholar
  13. 13.
    Sell TC, Abt JP, Crawford K, Lovalekar M, Nagai T, Deluzio JB, Smalley BW, McGrail MA, Rowe RS, Cardin S, Lephart SM (2010) Warrior model for human performance and injury prevention: eagle tactical athlete program (ETAP)—part I. J Spec Oper Med 10(4):2–21PubMedGoogle Scholar
  14. 14.
    Sell TC, Abt JP, Nagai T, Deluzio JB, Lovalekar M, Wirt MD, Lephart SM (2016) The eagle tactical athlete program reduces musculoskeletal injuries in the 101st airborne division (air assault). Mil Med 181(3):250–257.  https://doi.org/10.7205/MILMED-D-14-00674 CrossRefPubMedGoogle Scholar
  15. 15.
    Daniel DM, Malcom LL, Losse G, Stone ML, Sachs R, Burks R (1985) Instrumented measurement of anterior laxity of the knee. J Bone Joint Surg Am 67(5):720–726CrossRefPubMedGoogle Scholar
  16. 16.
    Lephart SM, Abt JP, Ferris CM (2002) Neuromuscular contributions to anterior cruciate ligament injuries in females. Curr Opin Rheumatol 14(2):168–173CrossRefPubMedGoogle Scholar
  17. 17.
    McNair PJ, Marshall RN (1994) Landing characteristics in subjects with normal and anterior cruciate ligament deficient knee joints. Arch Phys Med Rehabil 75(5):584–589PubMedGoogle Scholar
  18. 18.
    Venes D, Thomas CL, Taber CW (2001) Taber’s cyclopedic medical dictionary. Ed. 19, illustrated in full color/edn. F.A.Davis Co., PhiladelphiaGoogle Scholar
  19. 19.
    LeVeau BF, Williams M (1992) Williams & Lissner’s biomechanics of human motion, 3rd edn. W.B. Saunders Co., PhiladelphiaGoogle Scholar
  20. 20.
    Riemann BL, Lephart SM (2002) The sensorimotor system. Part I. The physiologic basis of functional joint stability. J Athl Train 37(1):71–79PubMedPubMedCentralGoogle Scholar
  21. 21.
    Solomonow M, Krogsgaard M (2001) Sensorimotor control of knee stability. A review. Scand J Med Sci Sports 11(2):64–80CrossRefPubMedGoogle Scholar
  22. 22.
    Johansson H, Sjolander P (1993) The neurophysiology of joints. In: Wright V, Radin EL (eds) Mechanics of joints: physiology, pathophysiology, and treatment. Marcel Dekker Inc., New York, NY, pp 243–290Google Scholar
  23. 23.
    Lew WD, Lewis JL, Craig EV (1993) Stabilization by capsule, ligaments, and labrum: stability at the extremes of motion. In: Matsen FA, Fu FH, Hawkins RJ (eds) The shoulder: a balance of mobility and stability. American Academy of Orthopaedic Surgeons, Rosemont, IL, pp 69–89Google Scholar
  24. 24.
    Ghez C, Krakauer J (2000) The organization of movement. In: Kandel ER, Schwartz JH, Jessell TM (eds) Principles of neural science. McGraw-Hill, Health Professions Division, New York, pp 653–673Google Scholar
  25. 25.
    Smith BA, Livesay GA, Woo SL (1993) Biology and biomechanics of the anterior cruciate ligament. Clin Sports Med 12(4):637–670PubMedGoogle Scholar
  26. 26.
    Ahmed AM, Hyder A, Burke DL, Chan KH (1987) In-vitro ligament tension pattern in the flexed knee in passive loading. J Orthop Res 5(2):217–230CrossRefPubMedGoogle Scholar
  27. 27.
    Berns GS, Hull ML, Patterson HA (1992) Strain in the anteromedial bundle of the anterior cruciate ligament under combination loading. J Orthop Res 10(2):167–176CrossRefPubMedGoogle Scholar
  28. 28.
    Markolf KL, Burchfield DM, Shapiro MM, Shepard MF, Finerman GA, Slauterbeck JL (1995) Combined knee loading states that generate high anterior cruciate ligament forces. J Orthop Res 13(6):930–935CrossRefPubMedGoogle Scholar
  29. 29.
    Butler DL, Noyes FR, Grood ES (1980) Ligamentous restraints to anterior-posterior drawer in the human knee. A biomechanical study. J Bone Joint Surg Am 62(2):259–270CrossRefPubMedGoogle Scholar
  30. 30.
    Markolf KL, Gorek JF, Kabo JM, Shapiro MS (1990) Direct measurement of resultant forces in the anterior cruciate ligament. An in vitro study performed with a new experimental technique. J Bone Joint Surg Am 72(4):557–567CrossRefPubMedGoogle Scholar
  31. 31.
    Andriacchi TP, Briant PL, Bevill SL, Koo S (2006) Rotational changes at the knee after ACL injury cause cartilage thinning. Clin Orthop Relat Res 442:39–44CrossRefPubMedGoogle Scholar
  32. 32.
    Tashman S, Collon D, Anderson K, Kolowich P, Anderst W (2004) Abnormal rotational knee motion during running after anterior cruciate ligament reconstruction. Am J Sports Med 32(4):975–983CrossRefPubMedGoogle Scholar
  33. 33.
    Tashman S, Kolowich P, Collon D, Anderson K, Anderst W (2007) Dynamic function of the ACL-reconstructed knee during running. Clin Orthop Relat Res 454:66–73.  https://doi.org/10.1097/BLO.0b013e31802bab3e CrossRefPubMedGoogle Scholar
  34. 34.
    Lephart SM, Fu FH (2000) Proprioception and neuromuscular control in joint stability. Human Kinetics, Champaign, ILGoogle Scholar
  35. 35.
    Lephart SM, Warner JP, Borsa PA, Fu FH (1994) Proprioception of the shoulder joint in healthy, unstable, and surgically repaired shoulders. J Shoulder Elb Surg 3(6):371–380CrossRefGoogle Scholar
  36. 36.
    Markolf KL, Mensch JS, Amstutz HC (1976) Stiffness and laxity of the knee--the contributions of the supporting structures. A quantitative in vitro study. J Bone Joint Surg Am 58(5):583–594CrossRefPubMedGoogle Scholar
  37. 37.
    Musahl V, Seil R, Zaffagnini S, Tashman S, Karlsson J (2011) The role of static and dynamic rotatory laxity testing in evaluating ACL injury. Knee Surg Sports Traumatol Arthrosc.  https://doi.org/10.1007/s00167-011-1830-4
  38. 38.
    Borsa PA, Lephart SM, Irrgang JJ, Safran MR, Fu FH (1997) The effects of joint position and direction of joint motion on proprioceptive sensibility in anterior cruciate ligament-deficient athletes. Am J Sports Med 25(3):336–340CrossRefPubMedGoogle Scholar
  39. 39.
    Lephart SM, Pincivero DM, Giraldo JL, Fu FH (1997) The role of proprioception in the management and rehabilitation of athletic injuries. Am J Sports Med 25(1):130–137CrossRefPubMedGoogle Scholar
  40. 40.
    Gardinier ES, Manal K, Buchanan TS, Snyder-Mackler L (2012) Gait and neuromuscular asymmetries after acute ACL rupture. Med Sci Sports Exerc.  https://doi.org/10.1249/MSS.0b013e31824d2783
  41. 41.
    Kalund S, Sinkjaer T, Arendt-Nielsen L, Simonsen O (1990) Altered timing of hamstring muscle action in anterior cruciate ligament deficient patients. Am J Sports Med 18(3):245–248CrossRefPubMedGoogle Scholar
  42. 42.
    Williams GN, Barrance PJ, Snyder-Mackler L, Buchanan TS (2004) Altered quadriceps control in people with anterior cruciate ligament deficiency. Med Sci Sports Exerc 36(7):1089–1097CrossRefPubMedGoogle Scholar
  43. 43.
    Eastlack ME, Axe MJ, Snyder-Mackler L (1999) Laxity, instability, and functional outcome after ACL injury: copers versus noncopers. Med Sci Sports Exerc 31(2):210–215CrossRefPubMedGoogle Scholar
  44. 44.
    Lephart SM, Kocher MS, Fu FH, Borsa PA, Harner CD (1992) Proprioception following anterior cruciate ligament reconstruction. J Sport Rehabil 1:188–196CrossRefGoogle Scholar
  45. 45.
    Lephart SM, Henry TJ (1995) Functional rehabilitation for the upper and lower extremity. Orthop Clin N Am 26(3):579–592Google Scholar
  46. 46.
    Swanik CB, Lephart SM, Giannantonio FP, Fu FH (1997) Reestablishing proprioception and neuromuscular control in the ACL-injured athlete. J Sport Rehabil 6:182–206CrossRefGoogle Scholar
  47. 47.
    Caraffa A, Cerulli G, Projetti M, Aisa G, Rizzo A (1996) Prevention of anterior cruciate ligament injuries in soccer. A prospective controlled study of proprioceptive training. Knee Surg Sports Traumatol Arthrosc 4(1):19–21CrossRefPubMedGoogle Scholar
  48. 48.
    Hewett TE, Lindenfeld TN, Riccobene JV, Noyes FR (1999) The effect of neuromuscular training on the incidence of knee injury in female athletes. A prospective study. Am J Sports Med 27(6):699–706CrossRefPubMedGoogle Scholar
  49. 49.
    Hewett TE, Stroupe AL, Nance TA, Noyes FR (1996) Plyometric training in female athletes. Decreased impact forces and increased hamstring torques. Am J Sports Med 24(6):765–773CrossRefPubMedGoogle Scholar
  50. 50.
    Mandelbaum BR, Silvers HJ, Watanabe DS, Knarr J, Thomas S, Sampson S, Knapp TP, Yingler K, Kirkendall DT, Griffin LY, Garrett WE (2002) ACL prevention strategies in the female athlete and soccer: implementation of a neuromuscular training program to determine its efficacy on the incidence of ACL injury. Amercian Academy of Orthopaedic Surgeons—Specialty Society Day, San FranciscoGoogle Scholar
  51. 51.
    Mandelbaum BR, Silvers HJ, Watanabe DT, Knarr J, Thomas S, Griffin LY, Kirkendall DT, Garrett WE 2003 Effectiveness of a neuromuscular and proprioceptive training program in preventing the incidence of ACL injuries in female athletes: year two. American Orthopaedic Society of Sports Medicine, New Orleans, LAGoogle Scholar
  52. 52.
    Myklebust G, Engebretsen L, Braekken IH, Skjolberg A, Olsen OE, Bahr R (2003) Prevention of anterior cruciate ligament injuries in female team handball players: a prospective intervention study over three seasons. Clin J Sport Med 13(2):71–78CrossRefPubMedGoogle Scholar
  53. 53.
    Prapavessis H, McNair PJ (1999) Effects of instruction in jumping technique and experience jumping on ground reaction forces. J Orthop Sports Phys Ther 29(6):352–356CrossRefPubMedGoogle Scholar
  54. 54.
    Wojtys EM, Huston LJ, Taylor PD, Bastian SD (1996) Neuromuscular adaptations in isokinetic, isotonic, and agility training programs. Am J Sports Med 24(2):187–192CrossRefPubMedGoogle Scholar
  55. 55.
    Lephart SM, Pincivero DM, Rozzi SL (1998) Proprioception of the ankle and knee. Sports Med 25(3):149–155CrossRefPubMedGoogle Scholar
  56. 56.
    Pincivero DM, Lephart SM, Karunakara RA (1997) Reliability and precision of isokinetic strength and muscular endurance for the quadriceps and hamstrings. Int J Sports Med 18(2):113–117.  https://doi.org/10.1055/s-2007-972605 CrossRefPubMedGoogle Scholar
  57. 57.
    Lephart SM, Riemann BL, Fu FH (2000) Introduction to the sensorimotor system. In: Lephart S, Fu FH (eds) Proprioception and neuromuscular control in joint stability. Human Kinetics, Champaign, IL, pp xxiv–xxivGoogle Scholar
  58. 58.
    Denti M, Monteleone M, Berardi A, Panni AS (1994) Anterior cruciate ligament mechanoreceptors. Histologic studies on lesions and reconstruction. Clin Orthop Relat Res Nov(308):29–32Google Scholar
  59. 59.
    Duthon VB, Barea C, Abrassart S, Fasel JH, Fritschy D, Menetrey J (2006) Anatomy of the anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc 14(3):204–213CrossRefPubMedGoogle Scholar
  60. 60.
    Rozzi SL, Lephart SM, Gear WS, Fu FH (1999) Knee joint laxity and neuromuscular characteristics of male and female soccer and basketball players. Am J Sports Med 27(3):312–319CrossRefPubMedGoogle Scholar
  61. 61.
    Boden BP, Dean GS, Feagin JA Jr, Garrett WE Jr (2000) Mechanisms of anterior cruciate ligament injury. Orthopedics 23(6):573–578PubMedGoogle Scholar
  62. 62.
    McNair PJ, Marshall RN, Matheson JA (1990) Important features associated with acute anterior cruciate ligament injury. N Z Med J 103(901):537–539PubMedGoogle Scholar
  63. 63.
    Olsen OE, Myklebust G, Engebretsen L, Bahr R (2004) Injury mechanisms for anterior cruciate ligament injuries in team handball: a systematic video analysis. Am J Sports Med 32(4):1002–1012CrossRefPubMedGoogle Scholar
  64. 64.
    Nagai T, Sell TC, Abt JP, Lephart SM (2012) Reliability, precision, and gender differences in knee internal/external rotation proprioception measurements. Phys Ther Sport 13(4):233–237.  https://doi.org/10.1016/j.ptsp.2011.11.004 CrossRefPubMedGoogle Scholar
  65. 65.
    Nagai T, Sell TC, House AJ, Abt JP, Lephart SM (2013) Knee proprioception and strength are correlated with landing kinematics during a single-leg stop-jump task. J Athl Train 48:31–38CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Clark NC, Lephart SM, Abt JP, Lovalekar M, Stone DA, Sell TC (2014) Predictors of knee functional joint stability in uninjured physically active adults. Dissertation, University of PittsburghGoogle Scholar
  67. 67.
    Keenan KA, Abt JP, Lephart SM, Lovalekar M, Stone DA, Sell TC (2014) Prediction of knee kinematics during a stop jump-cut maneuver using trunk neuromuscular characteristics and kinematics in a healthy, physically active population. Dissertation, University of PittsburghGoogle Scholar
  68. 68.
    Gokeler A, Benjaminse A, Hewett TE, Lephart SM, Engebretsen L, Ageberg E, Engelhardt M, Arnold MP, Postema K, Otten E, Dijkstra PU (2012) Proprioceptive deficits after ACL injury: are they clinically relevant? Br J Sports Med 46(3):180–192.  https://doi.org/10.1136/bjsm.2010.082578 CrossRefPubMedGoogle Scholar
  69. 69.
    Sell T, Tsai Y, Smoliga J, Myers J, Lephart S (2007) Strength, flexibility, and balance characteristics of highly proficient golfers. J Strength Cond Res 21(4):1166–1171PubMedGoogle Scholar
  70. 70.
    Ageberg E, Roberts D, Holmstrom E, Friden T (2005) Balance in single-limb stance in patients with anterior cruciate ligament injury: relation to knee laxity, proprioception, muscle strength, and subjective function. Am J Sports Med 33(10):1527–1535CrossRefPubMedGoogle Scholar
  71. 71.
    Herrington L, Hatcher J, Hatcher A, McNicholas M (2009) A comparison of Star Excursion Balance Test reach distances between ACL deficient patients and asymptomatic controls. Knee 16(2):149–152.  https://doi.org/10.1016/j.knee.2008.10.004 CrossRefPubMedGoogle Scholar
  72. 72.
    Lephart SM, Myers JB, Sell TC, Tsai YS, Bradley JP (2007) Golf injury prevention: an orthopedic approach through physical testing, biomechanics, and training. American Academy of Orthopaedic Surgeons Annual Meeting, San Diego, CA, 14–18 February 2007Google Scholar
  73. 73.
    Paterno MV, Myer GD, Ford KR, Hewett TE (2004) Neuromuscular training improves single-limb stability in young female athletes. J Orthop Sports Phys Ther 34(6):305–316CrossRefPubMedGoogle Scholar
  74. 74.
    Rozzi SL, Lephart SM, Sterner R, Kuligowski L (1999) Balance training for persons with functionally unstable ankles. J Orthop Sports Phys Ther 29(8):478–486CrossRefPubMedGoogle Scholar
  75. 75.
    Verhagen E, van der Beek A, Twisk J, Bouter L, Bahr R, van Mechelen W (2004) The effect of a proprioceptive balance board training program for the prevention of ankle sprains: a prospective controlled trial. Am J Sports Med 32(6):1385–1393.  https://doi.org/10.1177/0363546503262177 CrossRefPubMedGoogle Scholar
  76. 76.
    Abt JP, Sell TC, Laudner KG, McCrory JL, Loucks TL, Berga SL, Lephart SM (2007) Neuromuscular and biomechanical characteristics do not vary across the menstrual cycle. Knee Surg Sports Traumatol Arthrosc 15(7):901–907.  https://doi.org/10.1007/s00167-007-0302-3 CrossRefPubMedGoogle Scholar
  77. 77.
    McGuine TA, Keene JS (2006) The effect of a balance training program on the risk of ankle sprains in high school athletes. Am J Sports Med 34(7):1103–1111.  https://doi.org/10.1177/0363546505284191 CrossRefPubMedGoogle Scholar
  78. 78.
    McHugh MP, Tyler TF, Tetro DT, Mullaney MJ, Nicholas SJ (2006) Risk factors for noncontact ankle sprains in high school athletes: the role of hip strength and balance ability. Am J Sports Med 34(3):464–470.  https://doi.org/10.1177/0363546505280427 CrossRefPubMedGoogle Scholar
  79. 79.
    Paterno MV, Schmitt LC, Ford KR, Rauh MJ, Myer GD, Huang B, Hewett TE (2010) Biomechanical measures during landing and postural stability predict second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport. Am J Sports Med 38(10):1968–1978.  https://doi.org/10.1177/0363546510376053 CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Rozzi SL, Lephart SM, Fu FH (1999) Effects of muscular fatigue on knee joint laxity and neuromuscular characteristics of male and female athletes. J Athl Train 34(2):106–114PubMedPubMedCentralGoogle Scholar
  81. 81.
    Soderman K, Alfredson H, Pietila T, Werner S (2001) Risk factors for leg injuries in female soccer players: a prospective investigation during one out-door season. Knee Surg Sports Traumatol Arthrosc 9(5):313–321CrossRefPubMedGoogle Scholar
  82. 82.
    Tyler TF, McHugh MP, Mirabella MR, Mullaney MJ, Nicholas SJ (2006) Risk factors for noncontact ankle sprains in high school football players: the role of previous ankle sprains and body mass index. Am J Sports Med 34(3):471–475.  https://doi.org/10.1177/0363546505280429 CrossRefPubMedGoogle Scholar
  83. 83.
    Shumway-Cook A, Woollacott MH (2001) Motor control: theory and practical applications, 2nd edn. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  84. 84.
    McCollum G, Leen T (1989) The form and exploration of mechanical stability limits in erect stance. The. J Mot Behav 21(2):225–238CrossRefPubMedGoogle Scholar
  85. 85.
    Kandel ER, Schwartz JH, Jessell TM (1991) Principles of neural science, 3rd edn. Appleton & Lange, NorwalkGoogle Scholar
  86. 86.
    Riemann BL, Caggiano NA, Lephart SM (1999) Examination of a clinical method of assessing postural control during a functional performance task. J Sport Rehabil 8:171–183CrossRefGoogle Scholar
  87. 87.
    Goldie PA, Bach TM, Evans OM (1989) Force platform measures for evaluating postural control: reliability and validity. Arch Phys Med Rehabil 70(7):510–517PubMedGoogle Scholar
  88. 88.
    Shultz SJ, Perrin DH, Adams JM, Arnold BL, Gansneder BM, Granata KP (2000) Assessment of neuromuscular response characteristics at the knee following a functional perturbation. J Electromyogr Kinesiol 10(3):159–170CrossRefPubMedGoogle Scholar
  89. 89.
    Hoffman M, Schrader J, Koceja D (1999) An investigation of postural control in postoperative anterior cruciate ligament reconstruction patients. J Athl Train 34(2):130–136PubMedPubMedCentralGoogle Scholar
  90. 90.
    Hoffman MA, Koceja DM (1997) Dynamic balance testing with electrically evoked perturbation: a test of reliability. Arch Phys Med Rehabil 78(3):290–293CrossRefPubMedGoogle Scholar
  91. 91.
    Ross S, Guskiewicz KM (2003) Time to stabilization: a method for analyzing dynamic. Athletic. Athl Ther Today 8:37–39Google Scholar
  92. 92.
    Wikstrom EA, Tillman MD, Smith AN, Borsa PA (2005) A new force-plate technology measure of dynamic postural stability: the dynamic postural stability index. J Athl Train 40(4):305–309PubMedPubMedCentralGoogle Scholar
  93. 93.
    Kinzey SJ, Armstrong CW (1998) The reliability of the star-excursion test in assessing dynamic balance. J Orthop Sports Phys Ther 27(5):356–360CrossRefPubMedGoogle Scholar
  94. 94.
    Sell TC, House AJ, Abt JP, Huang HC, Lephart SM (2012) An examination, correlation, and comparison of static and dynamic measures of postural stability in healthy, physically active adults. Phys Ther Sport 13(2):80–86.  https://doi.org/10.1016/j.ptsp.2011.06.006 CrossRefPubMedGoogle Scholar
  95. 95.
    Allison KF, Keenan KA, Sell TC, Abt JP, Nagai T, Deluzio J, McGrail M, Lephart SM (2015) Musculoskeletal, biomechanical, and physiological sex difference in the US military. US Army Med Dep J April–June:22–32Google Scholar
  96. 96.
    Sell TC, Lovalekar MT, Nagai T, Wirt MD, Abt JP, Lephart SM (2017) Gender differences in static and dynamic postural stability of soldiers of the army’s 101st airborne division (air assault). J Sport Rehabil 27(2):1–20.  https://doi.org/10.1123/jsr.2016-0131 CrossRefGoogle Scholar
  97. 97.
    Sell TC, Myers JB, Youk AO, Fu FH, Lephart SM (2004) Neuromechanical predictors of dynamic stability. Dissertation, University of PittsburghGoogle Scholar
  98. 98.
    Goldie PA, Evans OM, Bach TM (1992) Steadiness in one-legged stance: development of a reliable force- platform testing procedure. Arch Phys Med Rehabil 73(4):348–354CrossRefPubMedGoogle Scholar
  99. 99.
    Dallinga JM, van der Does HT, Benjaminse A, Lemmink KA (2016) Dynamic postural stability differences between male and female players with and without ankle sprain. Phys Ther Sport 17:69–75.  https://doi.org/10.1016/j.ptsp.2015.05.002 CrossRefPubMedGoogle Scholar
  100. 100.
    Wikstrom EA, Tillman MD, Kline KJ, Borsa PA (2006) Gender and limb differences in dynamic postural stability during landing. Clin J Sport Med 16(4):311–315CrossRefPubMedGoogle Scholar
  101. 101.
    Sell TC, Heebner NR, Pletcher ER, Lephart SM (2015) Reliability and hamstring activation during rotational dynamic postural stability in healthy recreational athletes. Paper presented at the 2015 American Physical Therapy Association’s Combined Sections Meeting, Indianapolis, IN, 4–7 February 2015Google Scholar
  102. 102.
    Basmajian JV (1978) Muscles alive, their functions revealed by electromyography, 4th edn. Williams & Wilkins, BaltimoreGoogle Scholar
  103. 103.
    Hillstrom HJ, Triolo RJ (1995) EMG theory. In: Craik RL, Oatis CA (eds) Gait analysis: theory and application, 1st edn. Mosby, St. LouisGoogle Scholar
  104. 104.
    Winter DA (1990) Biomechanics and motor control of human movement, 2nd edn. Wiley, New YorkGoogle Scholar
  105. 105.
    Besier TF, Lloyd DG, Ackland TR, Cochrane JL (2001) Anticipatory effects on knee joint loading during running and cutting maneuvers. Med Sci Sports Exerc 33(7):1176–1181CrossRefPubMedGoogle Scholar
  106. 106.
    Benvenuti F, Stanhope SJ, Thomas SL, Panzer VP, Hallett M (1997) Flexibility of anticipatory postural adjustments revealed by self-paced and reaction-time arm movements. Brain Res 761(1):59–70CrossRefPubMedGoogle Scholar
  107. 107.
    Besier TF, Lloyd DG, Ackland TR (2003) Muscle activation strategies at the knee during running and cutting maneuvers. Med Sci Sports Exerc 35(1):119–127CrossRefPubMedGoogle Scholar
  108. 108.
    Cowling EJ, Steele JR (2001) Is lower limb muscle synchrony during landing affected by gender? Implications for variations in ACL injury rates. J Electromyogr Kinesiol 11(4):263–268CrossRefPubMedGoogle Scholar
  109. 109.
    Malinzak RA, Colby SM, Kirkendall DT, Yu B, Garrett WE (2001) A comparison of knee joint motion patterns between men and women in selected athletic tasks. Clin Biomech (Bristol, Avon) 16(5):438–445CrossRefGoogle Scholar
  110. 110.
    Sell TC, Ferris CM, Abt JP, Tsai YS, Myers JB, Fu FH, Lephart SM (2006) The effect of direction and reaction on the neuromuscular and biomechanical characteristics of the knee during tasks that simulate the noncontact anterior cruciate ligament injury mechanism. Am J Sports Med 34(1):43–54.  https://doi.org/10.1177/0363546505278696 CrossRefPubMedGoogle Scholar
  111. 111.
    Sell TC, Ferris CM, Abt JP, Tsai YS, Myers JB, Fu FH, Lephart SM (2007) Predictors of proximal tibia anterior shear force during a vertical stop-jump. J Orthop Res 25(12):1589–1597.  https://doi.org/10.1002/jor.20459 CrossRefPubMedGoogle Scholar
  112. 112.
    Fleming BC, Ohlen G, Renstrom PA, Peura GD, Beynnon BD, Badger GJ (2003) The effects of compressive load and knee joint torque on peak anterior cruciate ligament strains. Am J Sports Med 31(5):701–707CrossRefPubMedGoogle Scholar
  113. 113.
    Renstrom P, Arms SW, Stanwyck TS, Johnson RJ, Pope MH (1986) Strain within the anterior cruciate ligament during hamstring and quadriceps activity. Am J Sports Med 14(1):83–87CrossRefPubMedGoogle Scholar
  114. 114.
    Lephart SM, Ferris CM, Riemann BL, Myers JB, Fu FH (2002) Gender differences in strength and lower extremity kinematics during landing. Clin Orthop Relat Res 401:162–169CrossRefGoogle Scholar
  115. 115.
    Myer GD, Ford KR, Barber Foss KD, Liu C, Nick TG, Hewett TE (2009) The relationship of hamstrings and quadriceps strength to anterior cruciate ligament injury in female athletes. Clin J Sport Med 19(1):3–8.  https://doi.org/10.1097/JSM.0b013e318190bddb CrossRefPubMedGoogle Scholar
  116. 116.
    Fleming BC, Renstrom PA, Beynnon BD, Engstrom B, Peura GD, Badger GJ, Johnson RJ (2001) The effect of weightbearing and external loading on anterior cruciate ligament strain. J Biomech 34(2):163–170CrossRefPubMedGoogle Scholar
  117. 117.
    Sakane M, Fox RJ, Woo SL, Livesay GA, Li G, Fu FH (1997) In situ forces in the anterior cruciate ligament and its bundles in response to anterior tibial loads. J Orthop Res 15(2):285–293CrossRefPubMedGoogle Scholar
  118. 118.
    Feagin JA Jr, Lambert KL, Cunningham RR, Anderson LM, Riegel J, King PH, VanGenderen L (1987) Consideration of the anterior cruciate ligament injury in skiing. Clin Orthop Relat Res Mar(216):13–18Google Scholar
  119. 119.
    Gabbett TJ (2000) Incidence, site, and nature of injuries in amateur rugby league over three consecutive seasons. Br J Sports Med 34(2):98–103CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Gabbett TJ (2004) Incidence of injury in junior and senior rugby league players. Sports Med 34(12):849–859CrossRefPubMedGoogle Scholar
  121. 121.
    Molsa J, Airaksinen O, Nasman O, Torstila I (1997) Ice hockey injuries in Finland. A prospective epidemiologic study. Am J Sports Med 25(4):495–499CrossRefPubMedGoogle Scholar
  122. 122.
    Pettrone FA, Ricciardelli E (1987) Gymnastic injuries: the Virginia experience 1982-1983. Am J Sports Med 15(1):59–62CrossRefPubMedGoogle Scholar
  123. 123.
    Rodacki AL, Fowler NE, Bennett SJ (2002) Vertical jump coordination: fatigue effects. Med Sci Sports Exerc 34(1):105–116CrossRefPubMedGoogle Scholar
  124. 124.
    Stuart MJ, Smith A (1995) Injuries in junior a ice hockey. A three-year prospective study. Am J Sports Med 23(4):458–461CrossRefPubMedGoogle Scholar
  125. 125.
    Liederbach M, Dilgen FE, Rose DJ (2008) Incidence of anterior cruciate ligament injuries among elite ballet and modern dancers: a 5-year prospective study. Am J Sports Med 36(9):1779–1788.  https://doi.org/10.1177/0363546508323644 CrossRefPubMedGoogle Scholar
  126. 126.
    Johnston RB 3rd, Howard ME, Cawley PW, Losse GM (1998) Effect of lower extremity muscular fatigue on motor control performance. Med Sci Sports Exerc 30(12):1703–1707CrossRefPubMedGoogle Scholar
  127. 127.
    Wojtys EM, Wylie BB, Huston LJ (1996) The effects of muscle fatigue on neuromuscular function and anterior tibial translation in healthy knees. Am J Sports Med 24(5):615–621CrossRefPubMedGoogle Scholar
  128. 128.
    Huston LJ, Wojtys EM (1996) Neuromuscular performance characteristics in elite female athletes. Am J Sports Med 24(4):427–436CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Skinner HB, Wyatt MP, Stone ML, Hodgdon JA, Barrack RL (1986) Exercise-related knee joint laxity. Am J Sports Med 14(1):30–34CrossRefPubMedGoogle Scholar
  130. 130.
    Hiemstra LA, Lo IK, Fowler PJ (2001) Effect of fatigue on knee proprioception: implications for dynamic stabilization. J Orthop Sports Phys Ther 31(10):598–605CrossRefPubMedGoogle Scholar
  131. 131.
    Lattanzio PJ, Petrella RJ (1998) Knee proprioception: a review of mechanisms, measurements, and implications of muscular fatigue. Orthopedics 21 (4):463–470; discussion 470–461; passimGoogle Scholar
  132. 132.
    Lattanzio PJ, Petrella RJ, Sproule JR, Fowler PJ (1997) Effects of fatigue on knee proprioception. Clin J Sport Med 7(1):22–27CrossRefPubMedGoogle Scholar
  133. 133.
    Miura K, Ishibashi Y, Tsuda E, Okamura Y, Otsuka H, Toh S (2004) The effect of local and general fatigue on knee proprioception. Arthroscopy 20(4):414–418CrossRefPubMedGoogle Scholar
  134. 134.
    Kang J, Chaloupka EC, Mastrangelo MA, Biren GB, Robertson RJ (2001) Physiological comparisons among three maximal treadmill exercise protocols in trained and untrained individuals. Eur J Appl Physiol 84(4):291–295CrossRefPubMedGoogle Scholar
  135. 135.
    Pollock LM, Wilmore JH, Fox SM (1978) Health and fitness through physical activity. Wiley, New YorkGoogle Scholar
  136. 136.
    Benjaminse A, Habu A, Sell TC, Abt JP, Fu FH, Myers JB, Lephart SM (2008) Fatigue alters lower extremity kinematics during a single-leg stop-jump task. Knee Surg Sports Traumatol Arthrosc 16(4):400–407CrossRefPubMedGoogle Scholar
  137. 137.
    Allison KF, Lephart SM, Abt JP, Crawford K, Nagle EF, Lovalekar M, Sell TC (2012) The relationship between musculoskeletal strength, physiological characteristics, and knee kinesthesia following fatiguing exercise. Dissertation, University of PittsburghGoogle Scholar
  138. 138.
    Darnell ME, Abt JP, Lephart SM, Lovalekar M, Nagle EF, Beals K, Sell TC (2015) Effect of carbohydrate-electrolyte feedings on knee biomechanics and postural stability during intermittent high intensity exercise to fatigue. Dissertation, University of PittsburghGoogle Scholar
  139. 139.
    Gabbett TJ (2016) The training-injury prevention paradox: should athletes be training smarter and harder? Br J Sports Med 50(5):273–280.  https://doi.org/10.1136/bjsports-2015-095788 CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Brooks MA, Peterson K, Biese K, Sanfilippo J, Heiderscheit BC, Bell DR (2016) Concussion increases odds of sustaining a lower extremity musculoskeletal injury after return to play among collegiate athletes. Am J Sports Med 44(3):742–747.  https://doi.org/10.1177/0363546515622387 CrossRefPubMedGoogle Scholar
  141. 141.
    Gilbert FC, Burdette GT, Joyner AB, Llewellyn TA, Buckley TA (2016) Association between concussion and lower extremity injuries in collegiate athletes. Sports health.  https://doi.org/10.1177/1941738116666509
  142. 142.
    Herman DC, Jones D, Harrison A, Moser M, Tillman S, Farmer K, Pass A, Clugston JR, Hernandez J, Chmielewski TL (2016) Concussion may increase the risk of subsequent lower extremity musculoskeletal injury in collegiate athletes. Sports Med.  https://doi.org/10.1007/s40279-016-0607-9
  143. 143.
    Lynall RC, Mauntel TC, Padua DA, Mihalik JP (2015) Acute lower extremity injury rates increase after concussion in college athletes. Med Sci Sports Exerc 47(12):2487–2492.  https://doi.org/10.1249/MSS.0000000000000716 CrossRefPubMedGoogle Scholar
  144. 144.
    Nordström A, Nordström P, Ekstrand J (2014) Sports-related concussion increases the risk of subsequent injury by about 50% in elite male football players. Br J Sports Med 48(19):1447–1450.  https://doi.org/10.1136/bjsports-2013-093406 CrossRefPubMedGoogle Scholar
  145. 145.
    Pietrosimone B, Golightly YM, Mihalik JP, Guskiewicz KM (2015) Concussion frequency associates with musculoskeletal injury in retired NFL players. Med Sci Sports Exerc 47(11):2366–2372.  https://doi.org/10.1249/MSS.0000000000000684 CrossRefPubMedGoogle Scholar
  146. 146.
    Wiggins AJ, Grandhi RK, Schneider DK, Stanfield D, Webster KE, Myer GD (2016) Risk of secondary injury in younger athletes after anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Am J Sports Med 44(7):1861–1876.  https://doi.org/10.1177/0363546515621554 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Orthopaedic SurgeryDuke UniversityDurhamUSA
  2. 2.College of Health SciencesUniversity of KentuckyLexingtonUSA

Personalised recommendations