Advertisement

Muscle Dysfunction After Anterior Cruciate Ligament Rupture and Reconstruction: Implications for Successful Recovery

  • Ryan A. Mlynarek
  • M. Tyrrell Burrus
  • Asheesh Bedi
Chapter

Abstract

Lower extremity kinetic chain neuromuscular control and kinematics are of utmost importance of consideration to both prevent anterior cruciate ligament (ACL) injuries and rehabilitate athletes after ACL reconstruction. This chapter investigates the associated muscle dysfunction experienced in the lower limb after ACL injury and reconstruction. In addition, the most recent literature is presented regarding the importance of proper lower limb objective evaluation before return to sports following ACL injury and reconstruction.

Keywords

Muscle dysfunction ACL injury Return sports Objective evaluation 

References

  1. 1.
    Sanders TL, Maradit Kremers H, Bryan AJ, Larson DR, Dahm DL, Levy BA, Stuart MJ, Krych AJ (2016) Incidence of anterior cruciate ligament tears and reconstruction: a 21-year population-based study. Am J Sports Med 44(6):1502–1507.  https://doi.org/10.1177/0363546516629944 CrossRefPubMedGoogle Scholar
  2. 2.
    Amis AA, Bull A, Lie D (2005) Biomechanics of rotational instability and anatomic anterior cruciate ligament reconstruction. Oper Tech Orthop 15:29–35CrossRefGoogle Scholar
  3. 3.
    Griffin LY, Albohm MJ, Arendt EA, Bahr R, Beynnon BD, Demaio M, Dick RW, Engebretsen L, Garrett WE Jr, Hannafin JA, Hewett TE, Huston LJ, Ireland ML, Johnson RJ, Lephart S, Mandelbaum BR, Mann BJ, Marks PH, Marshall SW, Myklebust G, Noyes FR, Powers C, Shields C Jr, Shultz SJ, Silvers H, Slauterbeck J, Taylor DC, Teitz CC, Wojtys EM, Yu B (2006) Understanding and preventing noncontact anterior cruciate ligament injuries: a review of the Hunt Valley II Meeting, January 2005. Am J Sports Med 34(9):1512–1532CrossRefPubMedGoogle Scholar
  4. 4.
    Cairns SP, Knicker AJ, Thompson MW, Sjogaard G (2005) Evaluation of models used to study neuromuscular fatigue. Exerc Sport Sci Rev 33(1):9–16PubMedGoogle Scholar
  5. 5.
    Liederbach M, Kremenic IJ, Orishimo KF, Pappas E, Hagins M (2014) Comparison of landing biomechanics between male and female dancers and athletes, part 2: influence of fatigue and implications for anterior cruciate ligament injury. Am J Sports Med 42(5):1089–1095.  https://doi.org/10.1177/0363546514524525 CrossRefPubMedGoogle Scholar
  6. 6.
    Ardern CL, Webster KE, Taylor NF, Feller JA (2011) Return to sport following anterior cruciate ligament reconstruction surgery: a systematic review and meta-analysis of the state of play. Br J Sports Med 45(7):596–606.  https://doi.org/10.1136/bjsm.2010.076364 CrossRefPubMedGoogle Scholar
  7. 7.
    Hiemstra LA, Gofton WT, Kriellaars DJ (2005) Hip strength following hamstring tendon anterior cruciate ligament reconstruction. Clin J Sport Med 15(3):180–182CrossRefPubMedGoogle Scholar
  8. 8.
    Jaramillo J, Worrell TW, Ingersoll CD (1994) Hip isometric strength following knee surgery. J Orthop Sports Phys Ther 20(3):160–165CrossRefPubMedGoogle Scholar
  9. 9.
    Karanikas K, Arampatzis A, Bruggemann GP (2009) Motor task and muscle strength followed different adaptation patterns after anterior cruciate ligament reconstruction. Eur J Phys Rehabil Med 45(1):37–45PubMedGoogle Scholar
  10. 10.
    Hewett TE, Myer GD, Ford KR, Heidt RS Jr, Colosimo AJ, McLean SG, van den Bogert AJ, Paterno MV, Succop P (2005) Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med 33(4):492–501.  https://doi.org/10.1177/0363546504269591 CrossRefPubMedGoogle Scholar
  11. 11.
    Muller L, Hildebrandt C, Muller E, Fink C, Raschner C (2017) Long-term athletic development in youth alpine ski racing: the effect of physical fitness, ski racing technique, anthropometrics and biological maturity status on injuries. Front Physiol 8:656.  https://doi.org/10.3389/fphys.2017.00656 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Nariai M, Yoshida N, Imai A, Ae K, Ogaki R, Suhara H, Shiraki H (2017) A biomechanical comparison among three kinds of rebound-type jumps in female collegiate athletes. Int J Sports Phys Ther 12(4):560–568PubMedPubMedCentralGoogle Scholar
  13. 13.
    Saunders N, McLean SG, Fox AS, Otago L (2014) Neuromuscular dysfunction that may predict ACL injury risk: a case report. Knee 21(3):789–792.  https://doi.org/10.1016/j.knee.2014.01.005 CrossRefPubMedGoogle Scholar
  14. 14.
    Dalton EC, Pfile KR, Weniger GR, Ingersoll CD, Herman D, Hart JM (2011) Neuromuscular changes after aerobic exercise in people with anterior cruciate ligament-reconstructed knees. J Athl Train 46(5):476–483CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Geoghegan JM, Geutjens GG, Downing ND, Colclough K, King RJ (2007) Hip extension strength following hamstring tendon harvest for ACL reconstruction. Knee 14(5):352–356.  https://doi.org/10.1016/j.knee.2007.06.003 CrossRefPubMedGoogle Scholar
  16. 16.
    Thomas AC, Villwock M, Wojtys EM, Palmieri-Smith RM (2013) Lower extremity muscle strength after anterior cruciate ligament injury and reconstruction. J Athl Train 48(5):610–620.  https://doi.org/10.4085/1062-6050-48.3.23 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    VandenBerg C, Crawford EA, Sibilsky Enselman E, Robbins CB, Wojtys EM, Bedi A (2017) Restricted hip rotation is correlated with an increased risk for anterior cruciate ligament injury. Arthroscopy 33(2):317–325.  https://doi.org/10.1016/j.arthro.2016.08.014 CrossRefPubMedGoogle Scholar
  18. 18.
    Bedi A, Warren RF, Wojtys EM, Oh YK, Ashton-Miller JA, Oltean H, Kelly BT (2016) Restriction in hip internal rotation is associated with an increased risk of ACL injury. Knee Surg Sports Traumatol Arthrosc 24(6):2024–2031.  https://doi.org/10.1007/s00167-014-3299-4 CrossRefPubMedGoogle Scholar
  19. 19.
    Khayambashi K, Ghoddosi N, Straub RK, Powers CM (2016) Hip muscle strength predicts noncontact anterior cruciate ligament injury in male and female athletes: a prospective study. Am J Sports Med 44(2):355–361.  https://doi.org/10.1177/0363546515616237 CrossRefPubMedGoogle Scholar
  20. 20.
    Diermann N, Schumacher T, Schanz S, Raschke MJ, Petersen W, Zantop T (2009) Rotational instability of the knee: internal tibial rotation under a simulated pivot shift test. Arch Orthop Trauma Surg 129(3):353–358.  https://doi.org/10.1007/s00402-008-0681-z CrossRefPubMedGoogle Scholar
  21. 21.
    Osternig LR, Ferber R, Mercer J, Davis H (2000) Human hip and knee torque accommodations to anterior cruciate ligament dysfunction. Eur J Appl Physiol 83(1):71–76.  https://doi.org/10.1007/s004210000249 CrossRefPubMedGoogle Scholar
  22. 22.
    Drechsler WI, Cramp MC, Scott OM (2006) Changes in muscle strength and EMG median frequency after anterior cruciate ligament reconstruction. Eur J Appl Physiol 98(6):613–623.  https://doi.org/10.1007/s00421-006-0311-9 CrossRefPubMedGoogle Scholar
  23. 23.
    de Jong SN, van Caspel DR, van Haeff MJ, Saris DB (2007) Functional assessment and muscle strength before and after reconstruction of chronic anterior cruciate ligament lesions. Arthroscopy 23(1):21–28. 28.e21–23PubMedGoogle Scholar
  24. 24.
    Konishi Y, Fukubayashi T (2010) Relationship between muscle volume and muscle torque of the hamstrings after anterior cruciate ligament reconstruction. J Sci Med Sport 13(1):101–105.  https://doi.org/10.1016/j.jsams.2008.08.001 CrossRefPubMedGoogle Scholar
  25. 25.
    Yasuda K, Ohkoshi Y, Tanabe Y, Kaneda K (1991) Muscle weakness after anterior cruciate ligament reconstruction using patellar and quadriceps tendons. Bull Hosp Jt Dis Orthop Inst 51(2):175–185PubMedGoogle Scholar
  26. 26.
    Xergia SA, McClelland JA, Kvist J, Vasiliadis HS, Georgoulis AD (2011) The influence of graft choice on isokinetic muscle strength 4-24 months after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 19(5):768–780.  https://doi.org/10.1007/s00167-010-1357-0 CrossRefPubMedGoogle Scholar
  27. 27.
    Wright RW, Magnussen RA, Spindler KP (2011) Ipsilateral graft and contralateral ACL rupture at five years or more following ACL reconstruction. A systematic review. J Bone Joint Surg Am 92:59–65.  https://doi.org/10.2106/JBJSJ.00898 CrossRefGoogle Scholar
  28. 28.
    Chung KS, Ha JK, Yeom CH, Ra HJ, Lim JW, Kwon MS, Kim JG (2015) Are muscle strength and function of the uninjured lower limb weakened after anterior cruciate ligament injury? Two-year follow-up after reconstruction. Am J Sports Med 43(12):3013–3021.  https://doi.org/10.1177/0363546515606126 CrossRefPubMedGoogle Scholar
  29. 29.
    Dingenen B, Janssens L, Luyckx T, Claes S, Bellemans J, Staes FF (2015) Lower extremity muscle activation onset times during the transition from double-leg stance to single-leg stance in anterior cruciate ligament injured subjects. Hum Mov Sci 44:234–245.  https://doi.org/10.1016/j.humov.2015.09.007 CrossRefPubMedGoogle Scholar
  30. 30.
    Dingenen B, Janssens L, Claes S, Bellemans J, Staes FF (2016) Lower extremity muscle activation onset times during the transition from double-leg stance to single-leg stance in anterior cruciate ligament reconstructed subjects. Clin Biomech (Bristol, Avon) 35:116–123.  https://doi.org/10.1016/j.clinbiomech.2016.04.014 CrossRefGoogle Scholar
  31. 31.
    Norte GE, Knaus KR, Kuenze C, Handsfield GG, Meyer CH, Blemker SS, Hart JM (2017) MRI-based assessment of lower extremity muscle volumes in patients before and after ACL reconstruction. J Sport Rehabil 32:1–40.  https://doi.org/10.1123/jsr.2016-0141 CrossRefGoogle Scholar
  32. 32.
    Hasegawa S, Kobayashi M, Arai R, Tamaki A, Nakamura T, Moritani T (2011) Effect of early implementation of electrical muscle stimulation to prevent muscle atrophy and weakness in patients after anterior cruciate ligament reconstruction. J Electromyogr Kinesiol 21(4):622–630.  https://doi.org/10.1016/j.jelekin.2011.01.005 CrossRefPubMedGoogle Scholar
  33. 33.
    Barber-Westin SD, Noyes FR (2011) Factors used to determine return to unrestricted sports activities after anterior cruciate ligament reconstruction. Arthroscopy 27(12):1697–1705.  https://doi.org/10.1016/j.arthro.2011.09.009 CrossRefPubMedGoogle Scholar
  34. 34.
    Keays SL, Bullock-Saxton JE, Keays AC, Newcombe PA, Bullock MI (2007) A 6-year follow-up of the effect of graft site on strength, stability, range of motion, function, and joint degeneration after anterior cruciate ligament reconstruction: patellar tendon versus semitendinosus and Gracilis tendon graft. Am J Sports Med 35(5):729–739CrossRefPubMedGoogle Scholar
  35. 35.
    Pinczewski LA, Lyman J, Salmon LJ, Russell VJ, Roe J, Linklater J (2007) A 10-year comparison of anterior cruciate ligament reconstructions with hamstring tendon and patellar tendon autograft: a controlled, prospective trial. Am J Sports Med 35(4):564–574CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ryan A. Mlynarek
    • 1
  • M. Tyrrell Burrus
    • 2
  • Asheesh Bedi
    • 3
  1. 1.Sports Medicine and Shoulder ServiceHospital for Special SurgeryNew YorkUSA
  2. 2.Department of Orthopedic SurgeryUniversity of MichiganAnn ArborUSA
  3. 3.MedSport, Department of Orthopaedic SurgeryUniversity of MichiganAnn ArborUSA

Personalised recommendations