Advertisement

Current Understandings and Directions for Future Research

  • Sandra J. Shultz
  • Randy J. Schmitz
Chapter

Abstract

This chapter summarizes the findings and discussion focused on ACL risk factors, screening, and injury prevention from the 2015 ACL Research Retreat. Risk factors include neuromuscular, anatomical, structural, genetic, and hormonal. For each risk factor, the current understandings, key unknowns, and directions for future research are described. In addition, risk factor screening and injury prevention are discussed in a similar manner. A consensus statement was devised that reflects the most recent advances in this field.

Keywords

ACL injury ACL screening ACL prevention Neuromuscular risk ACL consensus 

Notes

Acknowledgments

The content of this chapter was adapted from Shultz SJ, Schmitz RJ, Benjaminse A, Collins M, Ford K, Kulas AS. ACL Research Retreat VII: An Update on Anterior Cruciate Ligament Injury Risk Factor Identification, Screening, and Prevention. J Athl Train. 2015;50(10):1076-1093 and reproduced with permission from the Journal of Athletic Training.

References

  1. 1.
    McClay-Davis I, Ireland ML (2001) ACL research retreat: the gender bias April 6–7, 2001. Clin Biomech 16:937–939CrossRefGoogle Scholar
  2. 2.
    McClay-Davis I, Ireland ML (2003) ACL injuries: the gender bias. J Orthop Sports Phys Ther 33(8):A2–A8PubMedGoogle Scholar
  3. 3.
    Davis IM, Ireland ML, Hanaki S (2007) ACL injuries—the gender bias: research retreat III. J Orthop Sports Phys Ther 3(2):A1–A32CrossRefGoogle Scholar
  4. 4.
    Shultz SJ, Schmitz RJ, Nguyen AD (2008) ACL injuries: the gender bias: research retreat IV April 3 to 5, 2008 Greensboro, NC. J Athl Train 43:530–537PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Shultz SJ, Schmitz RJ, Nguyen A, Chaudhari AM, Padua DA, McLean SG, sigward SM (2010) ACL research retreat V: an update on ACL injury risk and prevention, march 25th–27th, 2010, Greensboro, NC. J Athl Train 45(5):499–508PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Shultz SJ, Schmitz RJ, Benjaminse A, Chaudhari AM, Collins M, Padua DA (2012) ACL research retreat VI: an update on ACL injury risk and prevention. J Athl Train 47(5):591–603.  https://doi.org/10.4085/1062-6050-47.5.13 CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Shultz SJ, Schmitz RJ, Benjaminse A, Collins M, Ford K, Kulas AS (2015) ACL research retreat VII: an update on anterior cruciate ligament injury risk factor identification, screening, and prevention. J Athl Train 50(10):1076–1093.  https://doi.org/10.4085/1062-6050-50.10.06 CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Arms SW, Pope MH, Johnson RJ, Fischer RA, Arvidsson I, Eriksson E (1984) The biomechanics of anterior cruciate ligament rehabilitation and reconstruction. Am J Sports Med 12(1):8–18CrossRefPubMedGoogle Scholar
  9. 9.
    Berns GS, Hull ML, Patterson HA (1992) Strain in the anteromedial bundle of the anterior cruciate ligament under combination loading. J Orthop Res 10(2):167–176.  https://doi.org/10.1002/jor.1100100203 CrossRefPubMedGoogle Scholar
  10. 10.
    Kiapour AM, Quatman CE, Goel VK, Wordeman SC, Hewett TE, Demetropoulos CK (2014) Timing sequence of multi-planar knee kinematics revealed by physiologic cadaveric simulation of landing: implications for ACL injury mechanism. Clin Biomech (Bristol, Avon) 29(1):75–82.  https://doi.org/10.1016/j.clinbiomech.2013.10.017 CrossRefGoogle Scholar
  11. 11.
    Markolf KL, Jackson SR, Foster B, McAllister DR (2014) ACL forces and knee kinematics produced by axial tibial compression during a passive flexion-extension cycle. J Orthop Res 32(1):89–95.  https://doi.org/10.1002/jor.22476 CrossRefPubMedGoogle Scholar
  12. 12.
    Oh YK, Kreinbrink JL, Wojtys EM, Ashton-Miller JA (2012) Effect of axial tibial torque direction on ACL relative strain and strain rate in an in vitro simulated pivot landing. J Orthop Res 30(4):528–534.  https://doi.org/10.1002/jor.21572 CrossRefPubMedGoogle Scholar
  13. 13.
    Oh YK, Lipps DB, Ashton-Miller JA, Wojtys EM (2012) What strains the anterior cruciate ligament during a pivot landing? Am J Sports Med 40(3):574–583.  https://doi.org/10.1177/0363546511432544 CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Shin CS, Chaudhari AM, Andriacchi TP (2009) The effect of isolated valgus moments on ACL strain during single-leg landing: a simulation study. J Biomech 42(3):280–285.  https://doi.org/10.1016/j.jbiomech.2008.10.031 CrossRefPubMedGoogle Scholar
  15. 15.
    Shin CS, Chaudhari AM, Andriacchi TP (2011) Valgus plus internal rotation moments increase anterior cruciate ligament strain more than either alone. Med Sci Sports Exerc 43(8):1484–1491.  https://doi.org/10.1249/MSS.0b013e31820f8395 CrossRefPubMedGoogle Scholar
  16. 16.
    Withrow TJ, Huston LJ, Wojtys EM, Ashton-Miller JA (2006) The effect of an impulsive knee valgus moment on in vitro relative ACL strain during a simulated jump landing. Clin Biomech 21(9):977–983CrossRefGoogle Scholar
  17. 17.
    Levine JW, Kiapour AM, Quatman CE, Wordeman SC, Goel VK, Hewett TE, Demetropoulos CK (2013) Clinically relevant injury patterns after an anterior cruciate ligament injury provide insight into injury mechanisms. Am J Sports Med 41(2):385–395.  https://doi.org/10.1177/0363546512465167 CrossRefPubMedGoogle Scholar
  18. 18.
    Bakker R, Tomescu S, Brennan E, Hangalur G, Laing A, Chandrashekar N (2016) The effect of sagittal plane mechanics on ACL strain during jump landing. J Orthop Res 34(9):1636–1644.  https://doi.org/10.1002/jor.23164
  19. 19.
    Carson DW, Ford KR (2011) Sex differences in knee abduction during landing: a systematic review. Sportshealth 3(4):373–382.  https://doi.org/10.1177/1941738111410180 CrossRefGoogle Scholar
  20. 20.
    Paterno MV, Rauh MJ, Schmitt LC, Ford KR, Myer GD, Hewett TE (2012) Incidence of contralateral and Ipsilateral anterior cruciate ligament (ACL) injury after primary ACL reconstruction and return to sport. Clin J Sport Med 22(2):116–121PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Hewett TE, Myer GD, Ford KR, Heidt RS Jr, Colosimo AJ, McLean SG, van den Bogert AJ, Paterno MV, Succop P (2005) Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med 33(4):492–501CrossRefPubMedGoogle Scholar
  22. 22.
    Shimokochi Y, Shultz SJ (2008) Mechanisms of noncontact anterior cruciate ligament injury. J Athl Train 43(4):396–408.  https://doi.org/10.4085/1062-6050-43.4.396 CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Koga H, Nakamae A, Shima Y, Iwasa J, Myklebust G, Engebretsen L, Bahr R, Krosshaug T (2010) Mechanisms for noncontact anterior cruciate ligament injuries: knee joint kinematics in 10 injury situations from female team handball and basketball. Am J Sports Med 38(11):2218–2225.  https://doi.org/10.1177/0363546510373570 CrossRefPubMedGoogle Scholar
  24. 24.
    Koga H, Bahr R, Myklebust G, Engebretsen L, Grund T, Krosshaug T (2011) Estimating anterior tibial translation from model-based image-matching of a noncontact anterior cruciate ligament injury in professional football: a case report. Clin J Sport Med 21(3):271–274.  https://doi.org/10.1097/JSM.0b013e31821899ec CrossRefPubMedGoogle Scholar
  25. 25.
    Boden BP, Dean GS, Feagin JA Jr, Garrett WE Jr (2000) Mechanisms of anterior cruciate ligament injury. Orthopedics 23(6):573–578PubMedGoogle Scholar
  26. 26.
    Krosshaug T, Nakamae A, Boden BP, Engebretsen L, Smith G, Slauterbeck JR, Hewett TE, Bahr R (2007) Mechanisms of anterior cruciate ligament injury in basketball: video analysis of 39 cases. Am J Sports Med 35(3):359–367.  https://doi.org/10.1177/0363546506293899 CrossRefPubMedGoogle Scholar
  27. 27.
    Olsen OE, Myklebust G, Engebretsen L, Bahr R (2004) Injury mechanisms for anterior cruciate ligament injuries in team handball: a systematic video analysis. Am J Sports Med 32(4):1002–1012CrossRefPubMedGoogle Scholar
  28. 28.
    Walden M, Krosshaug T, Bjorneboe J, Andersen TE, Faul O, Hagglund M (2015) Three distinct mechanisms predominate in non-contact anterior cruciate ligament injuries in male professional football players: a systematic video analysis of 39 cases. Br J Sports Med.  https://doi.org/10.1136/bjsports-2014-094573
  29. 29.
    Hewett TE, Torg JS, Boden BP (2009) Video analysis of trunk and knee motion during non-contact anterior cruciate ligament injury in female athletes: lateral trunk and knee abduction motion are combined components of the injury mechanism. Br J Sports Med 43(6):417–422.  https://doi.org/10.1136/bjsm.2009.059162 CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Sheehan FT, Sipprell WH 3rd, Boden BP (2012) Dynamic sagittal plane trunk control during anterior cruciate ligament injury. Am J Sports Med 40(5):1068–1074.  https://doi.org/10.1177/0363546512437850 CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Padua DA, DiStefano LJ, Beutler AI, de la Motte SJ, DiStefano MJ, Marshall SW (2015) The landing error scoring system as a screening tool for an anterior cruciate ligament injury-prevention program in elite-youth soccer athletes. J Athl Train.  https://doi.org/10.4085/1062-6050-50.1.10
  32. 32.
    Smith HC, Johnson RJ, Shultz SJ, Tourville T, Holterman LA, Slauterbeck J, Vacek PM, Beynnon BD (2012) A prospective evaluation of the landing error scoring system (LESS) as a screening tool for anterior cruciate ligament injury risk. Am J Sports Med 40(3):521–526CrossRefPubMedGoogle Scholar
  33. 33.
    Blackburn JT, Padua DA (2009) Sagittal-plane trunk position, landing forces, and quadriceps electromyographic activity. J Athl Train 44(2):174–179PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Shimokochi Y, Yong Lee S, Shultz SJ, Schmitz RJ (2009) The relationships among sagittal-plane lower extremity moments: implications for landing strategy in anterior cruciate ligament injury prevention. J Athl Train 44(1):33–38PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Cassidy K, Hangalur G, Sabharwal P, Chandrashekar N (2013) Combined in vivo/in vitro method to study anteriomedial bundle strain in the anterior cruciate ligament using a dynamic knee simulator. J Biomech Eng 135(3):35001.  https://doi.org/10.1115/1.4023520 CrossRefPubMedGoogle Scholar
  36. 36.
    Cerulli G, Benoit DL, Lamontagne M, Caraffa A, Liti A (2003) In vivo anterior cruciate ligament strain behaviour during a rapid deceleration movement: case report. Knee Surg Sports Traumatol Arthrosc 11:307–311CrossRefPubMedGoogle Scholar
  37. 37.
    Myers CA, Torry MR, Shelburne KB, Giphart JE, LaPrade RF, Woo SL, Steadman JR (2012) In vivo tibiofemoral kinematics during 4 functional tasks of increasing demand using biplane fluoroscopy. Am J Sports Med 40(1):170–178.  https://doi.org/10.1177/0363546511423746 CrossRefPubMedGoogle Scholar
  38. 38.
    Schmitz RJ, Kim H, Shultz SJ (2010) Effect of axial load on anterior tibial translation when transitioning from non-weight bearing to weight bearing. Clin Biomech (Bristol, Avon) 25(1):77–82.  https://doi.org/10.1016/j.clinbiomech.2009.09.004 CrossRefGoogle Scholar
  39. 39.
    Decker MJ, Torry MR, Wyland DJ, Sterett WI, Richard SJ (2003) Gender differences in lower extremity kinematics, kinetics and energy absorption during landing. Clin Biomech (Bristol, Avon) 18:662–669CrossRefGoogle Scholar
  40. 40.
    Houck JR, Duncan A, De Haven KE (2006) Comparison of frontal plane trunk kinematics and hip and knee moments during anticipated and unanticipated walking and side step cutting tasks. Gait Posture 24(3):314–322CrossRefPubMedGoogle Scholar
  41. 41.
    Pollard CD, Sigward SM, Powers CM (2007) Gender differences in hip joint kinematics and kinetics during side-step cutting maneuver. Clin J Sport Med 17(1):38–42.  https://doi.org/10.1097/JSM.0b013e3180305de8. 00042752-200701000-00007 [pii]CrossRefPubMedGoogle Scholar
  42. 42.
    Schmitz RJ, Kulas AS, Perrin DH, Riemann BL, Shultz SJ (2007) Sex differences in lower extremity biomechanics during single leg landings. Clin Biomech (Bristol, Avon) 22(6):681–688.  https://doi.org/10.1016/j.clinbiomech.2007.03.001 CrossRefGoogle Scholar
  43. 43.
    Utturkar GM, Irribarra LA, Taylor KA, Spritzer CE, Taylor DC, Garrett WE, Defrate LE (2013) The effects of a valgus collapse knee position on in vivo ACL elongation. Ann Biomed Eng 41(1):123–130.  https://doi.org/10.1007/s10439-012-0629-x CrossRefPubMedGoogle Scholar
  44. 44.
    Azidin RM, Sankey S, Drust B, Robinson MA, Vanrenterghem J (2015) Effects of treadmill versus overground soccer match simulations on biomechanical markers of anterior cruciate ligament injury risk in side cutting. J Sports Sci 33(13):1332–1341.  https://doi.org/10.1080/02640414.2014.990491
  45. 45.
    Schmitz RJ, Cone JC, Tritsch AJ, Pye ML, Montgomery MM, Henson RA, Shultz SJ (2014) Changes in drop-jump landing biomechanics during prolonged intermittent exercise. Sportshealth 6(2):128–135.  https://doi.org/10.1177/1941738113503286 CrossRefGoogle Scholar
  46. 46.
    Chappell JD, Herman DC, Knight BS, Kirkendall DT, Garrett WE, Yu B (2005) Effect of fatigue on knee kinetics and kinematics in stop-jump tasks. Am J Sports Med 33(7):1022–1029.  https://doi.org/10.1177/0363546504273047 CrossRefPubMedGoogle Scholar
  47. 47.
    Cortes N, Quammen D, Lucci S, Greska E, Onate J (2012) A functional agility short-term fatigue protocol changes lower extremity mechanics. J Sports Sci 30(8):797–805.  https://doi.org/10.1080/02640414.2012.671528 CrossRefPubMedCentralPubMedGoogle Scholar
  48. 48.
    Kernozek TW, Torry MR, Iwasaki M (2008) Gender differences in lower extremity landing mechanics caused by neuromuscular fatigue. Am J Sports Med 36(3):554–565.  https://doi.org/10.1177/0363546507308934 CrossRefPubMedGoogle Scholar
  49. 49.
    McLean SG, Fellin RE, Suedekum N, Calabrese G, Passerallo A, Joy S (2007) Impact of fatigue on gender-based high-risk landing strategies. Med Sci Sports Exerc 39(3):502–514.  https://doi.org/10.1249/mss.0b013e3180d47f0 CrossRefPubMedGoogle Scholar
  50. 50.
    Quammen D, Cortes N, Van Lunen BL, Lucci S, Ringleb SI, Onate J (2012) Two different fatigue protocols and lower extremity motion patterns during a stop-jump task. J Athl Train 47(1):32–41PubMedCentralCrossRefPubMedGoogle Scholar
  51. 51.
    Zazulak BT, Hewett TE, Reeves NP, Goldberg B, Cholewicki J (2007) Deficits in neuromuscular control of the trunk predict knee injury risk: a prospective biomechanical-epidemiologic study. Am J Sports Med 35(7):1123–1130CrossRefPubMedGoogle Scholar
  52. 52.
    Kulas AS, Zalewski P, Hortobagyi T, DeVita P (2008) Effects of added trunk load and corresponding trunk position adaptations on lower extremity biomechanics during drop-landings. J Biomech 41:180–185CrossRefPubMedGoogle Scholar
  53. 53.
    Frank B, Bell DR, Norcross MF, Blackburn JT, Goerger BM, Padua DA (2013) Trunk and hip biomechanics influence anterior cruciate loading mechanisms in physically active participants. Am J Sports Med 41(11):2676–2683.  https://doi.org/10.1177/0363546513496625 CrossRefPubMedGoogle Scholar
  54. 54.
    Jamison ST, Pan X, Chaudhari AM (2012) Knee moments during run-to-cut maneuvers are associated with lateral trunk positioning. J Biomech 45(11):1881–1885.  https://doi.org/10.1016/j.jbiomech.2012.05.031 CrossRefPubMedGoogle Scholar
  55. 55.
    McLean SG, Huang X, Van Den Bogert AJ (2005) Association between lower extremity posture at contact and peak knee valgus moment during sidestepping: implications for ACL injury. Clin Biomech (Bristol, Avon) 20:863–870CrossRefGoogle Scholar
  56. 56.
    Sigward SM, Powers CM (2007) Loading characteristics of females exhibiting excessive valgus moments during cutting. Clin Biomech 22:827–833CrossRefGoogle Scholar
  57. 57.
    Swanik CB, Covassin T, Stearne DJ, Schatz P (2007) The relationship between neurocognitive function and noncontact anterior cruciate ligament injuries. Am J Sports Med 35(6):943–948CrossRefPubMedGoogle Scholar
  58. 58.
    Herman DC, Barth JT (2015) The influence of neurocognitive performance on trunk stability varies with sex [abstract], J Athl Train. 15(10)Google Scholar
  59. 59.
    Swanik CB (2015) Brains and sprains: the Brain's role in noncontact anterior cruciate ligament injuries. J Athl Train 50(10):1100–1102.  https://doi.org/10.4085/1062-6050-50.10.08 CrossRefPubMedGoogle Scholar
  60. 60.
    McLean SG, Mallett KF, Arruda EM (2015) Deconstructing the anterior cruciate ligament: what we know and do not know about function, material properties, and injury mechanics. J Biomech Eng 137(2):020906.  https://doi.org/10.1115/1.4029278 CrossRefPubMedGoogle Scholar
  61. 61.
    Ford KR, Taylor JB, Nguyen A (2015) Kinematic landing differences following biofeedback training in female athletes[abstract]. J Athl Train 15(10)Google Scholar
  62. 62.
    Kristianslund E, Krosshaug T (2013) Comparison of drop jumps and sport-specific sidestep cutting: implications for anterior cruciate ligament injury risk screening. Am J Sports Med 41(3):684–688.  https://doi.org/10.1177/0363546512472043 CrossRefPubMedGoogle Scholar
  63. 63.
    Escamilla RF, Macleod TD, Wilk KE, Paulos L, Andrews JR (2012) Anterior cruciate ligament strain and tensile forces for weight-bearing and non-weight-bearing exercises: a guide to exercise selection. J Orthop Sports Phys Ther 42(3):208–220.  https://doi.org/10.2519/jospt.2012.3768 CrossRefPubMedGoogle Scholar
  64. 64.
    Kulas AS, Hortobagyi T, DeVita P (2012) Trunk position modulates anterior cruciate ligament forces and strains during a single-leg squat. Clin Biomech (Bristol, Avon) 27(1):16–21.  https://doi.org/10.1016/j.clinbiomech.2011.07.009 CrossRefGoogle Scholar
  65. 65.
    Lipps DB, Wojtys EM, Ashton-Miller JA (2013) Anterior cruciate ligament fatigue failures in knees subjected to repeated simulated pivot landings. Am J Sports Med 41(5):1058–1066.  https://doi.org/10.1177/0363546513477836 CrossRefPubMedGoogle Scholar
  66. 66.
    Montgomery MM, Shultz SJ, Schmitz RJ, Wideman L, Henson RA (2012) Influence of lean body mass and strength on landing energetics. Med Sci Sports Exerc 44(12):2376–2383.  https://doi.org/10.1249/MSS.0b013e318268fb2d CrossRefPubMedGoogle Scholar
  67. 67.
    Schmitz RJ, Shultz SJ (2010) Contribution of knee flexor and extensor strength on sex-specific energy absorption and torsional joint stiffness during drop jumping. J Athl Train 45(5):445–452.  https://doi.org/10.4085/1062-6050-45.5.445 CrossRefPubMedCentralPubMedGoogle Scholar
  68. 68.
    Shultz SJ, Nguyen AD, Leonard MD, Schmitz RJ (2009) Thigh strength and activation as predictors of knee biomechanics during a drop jump task. Med Sci Sports Exerc 41(4):857–866.  https://doi.org/10.1249/MSS.0b013e3181e3b3f CrossRefPubMedCentralPubMedGoogle Scholar
  69. 69.
    Stearns KM, Keim RG, Powers CM (2013) Influence of relative hip and knee extensor muscle strength on landing biomechanics. Med Sci Sports Exerc 45(5):935–941.  https://doi.org/10.1249/MSS.0b013e31827c0b94 CrossRefPubMedGoogle Scholar
  70. 70.
    Stearns KM, Powers CM (2014) Improvements in hip muscle performance result in increased use of the hip extensors and abductors during a landing task. Am J Sports Med 42(3):602–609.  https://doi.org/10.1177/0363546513518410 CrossRefPubMedGoogle Scholar
  71. 71.
    Weinhandl JT, Earl-Boehm JE, Ebersole KT, Huddleston WE, Armstrong BS, O'Connor KM (2014) Reduced hamstring strength increases anterior cruciate ligament loading during anticipated sidestep cutting. Clin Biomech (Bristol, Avon) 29(7):752–759.  https://doi.org/10.1016/j.clinbiomech.2014.05.013 CrossRefGoogle Scholar
  72. 72.
    Barber-Westin SD, Galloway M, Noyes FR (2005) Assessment of lower limb neuromuscular control in prepubescent athletes. Am J Sports Med 33(12):1853–1860CrossRefPubMedGoogle Scholar
  73. 73.
    Barber-Westin SD, Noyes FR, Galloway M (2006) Jump-land characteristics and muscle strength development in young athletes: a gender comparison of 1140 athletes 9 to 17 years of age. Am J Sports Med 34:375–384CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Ford KR, Shapiro R, Myer GD, VanDenBogert AJ, Hewett TE (2010) Longitudinal sex differences during landing in knee abduction in young athletes. Med Sci Sports Exerc 42(10):1923–1931PubMedCentralCrossRefPubMedGoogle Scholar
  75. 75.
    Hass CJ, Schick EA, Tillman MD, Chow JW, Brunt D, Cauraugh JH (2005) Knee biomechanics during landings: comparison of pre- and postpubescent females. Med Sci Sports Exerc 37(1):100–107CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Hewett TE, Myer GD, Ford KR (2004) Decrease in neuromuscular control about the knee with maturation in female athletes. J Bone Joint Surg Am 86-A:1601–1608CrossRefPubMedGoogle Scholar
  77. 77.
    Hewett TE, Lynch TR, Myer GD, Ford KR, Gwin RC, Heidt RS Jr (2010) Multiple risk factors related to familial predisposition to anterior cruciate ligament injury: fraternal twin sisters with anterior cruciate ligament ruptures. Br J Sports Med 44:848–855CrossRefPubMedGoogle Scholar
  78. 78.
    Hewett TE, Myer GD, Kiefer AW, Ford KR (2015) Longitudinal increases in knee abduction moments in females during adolescent growth. Med Sci Sports Exerc.  https://doi.org/10.1249/MSS.0000000000000700
  79. 79.
    Kim KW, Lim BO (2014) Effects of menarcheal age on the anterior cruciate ligament injury risk factors during single-legged drop landing in female artistic elite gymnasts. Arch Orthop Trauma Surg 134(11):1565–1571.  https://doi.org/10.1007/s00402-014-2055-z CrossRefPubMedGoogle Scholar
  80. 80.
    Quatman CE, Ford KR, Myer GD, Hewett TE (2006) Maturation leads to gender differences in landing force and vertical jump performance: a longitudinal study. Am J Sports Med 34:806–813CrossRefPubMedGoogle Scholar
  81. 81.
    Russell PJ, Croce RV, Swartz EE, Decoster LC (2007) Knee-muscle activation during landings: developmental and gender comparisons. Med Sci Sports Exerc 39(1):159–170CrossRefPubMedGoogle Scholar
  82. 82.
    Sigward SM, Pollard CD, Havens KL, Powers CM (2012) The influence of sex and maturation on knee mechanics during side-step cutting. Med Sci Sports Exerc.  https://doi.org/10.1249/MSS.0b013e31824e8813
  83. 83.
    Swartz EE, Decoster LC, Russell PJ, Croce RV (2005) Effects of developmental stage and sex on lower extremity kinematics and vertical ground reaction forces during landing. J Athl Train 40:9–14PubMedCentralPubMedGoogle Scholar
  84. 84.
    Holden S, Boreham C, Delahunt E (2015) Sex differences in landing biomechanics and postural stability of adolescent athletes: a systematic review[abstract]. J Athl Train, 15(10)Google Scholar
  85. 85.
    Chaudhari AM, Zelman EA, Flanigan DC, Kaeding CC, Nagaraja HN (2009) Anterior cruciate ligament-injured subjects have smaller anterior cruciate ligaments than matched controls: a magnetic resonance imaging study. Am J Sports Med 37(7):1282–1287PubMedCentralCrossRefPubMedGoogle Scholar
  86. 86.
    Whitney DC, Sturnick DR, Vacek PM, DeSarno MJ, Gardner-Morse M, Tourville TW, Smith HC, Slauterbeck JR, Johnson RJ, Shultz SJ, Hashemi J, Beynnon BD (2014) Relationship between the risk of suffering a first-time noncontact ACL injury and geometry of the femoral notch and ACL: a prospective cohort study with a nested case-control analysis. Am J Sports Med 42(8):1796–1805.  https://doi.org/10.1177/0363546514534182 CrossRefPubMedGoogle Scholar
  87. 87.
    Beynnon BD, Hall JS, Sturnick DR, Desarno MJ, Gardner-Morse M, Tourville TW, Smith HC, Slauterbeck JR, Shultz SJ, Johnson RJ, Vacek PM (2014) Increased slope of the lateral tibial plateau subchondral bone is associated with greater risk of noncontact ACL injury in females but not in males: a prospective cohort study with a nested, matched case-control analysis. Am J Sports Med 42(5):1039–1048.  https://doi.org/10.1177/0363546514523721 CrossRefPubMedGoogle Scholar
  88. 88.
    Everhart JS, Flanigan DC, Simon RA, Chaudhari AM (2010) Association of non-contact ACL injury with presence and thickness of a bony ridge on the anteromedial aspect of the femoral intercondylar notch. Am J Sports Med 38(8):1667–1676CrossRefPubMedGoogle Scholar
  89. 89.
    Hashemi J, Chandrashekar N, Mansouri H, GIll B, Slauterbeck JR, Schutt RC, Dabezies E, Beynnon BD (2010) Shallow medial tibial plateau and steep medial and lateral tibial slopes: new risk factors for anterior cruciate ligament injuries. Am J Sports Med 38(1):54–62CrossRefPubMedGoogle Scholar
  90. 90.
    Khan MS, Seon JK, Song EK (2011) Risk factors for anterior cruciate ligament injury: assessment of tibial plateau anatomic variables on conventional MRI using a new combined method. Int Orthop 35(8):1251–1256PubMedCentralCrossRefPubMedGoogle Scholar
  91. 91.
    Stijak L, Herzog RF, Schai P (2008) Is there an influence of the tibial slope of the lateral condyle on the ACL lesion? A case-control study. Knee Surg Sports Traumatol Arthrosc 16(2):112–117CrossRefPubMedGoogle Scholar
  92. 92.
    Domzalski M, Grzelak P, Gabos P (2010) Risk factors for anterior cruciate ligament injury in skeletally immature patients: analysis of intercondylar notch width using magnetic resonance imaging. Int Orthop 34:703–707PubMedCentralCrossRefPubMedGoogle Scholar
  93. 93.
    Ireland ML, Ballantyne BT, Little K, McClay IS (2001) A radiographic analysis of the relationship between the size and shape of the intercondylar notch and anterior cruciate ligament injury. Knee Surg Sports Traumatol Arthrosc 9:200–205CrossRefPubMedGoogle Scholar
  94. 94.
    LaPrade RF, Burnett QM (1994) Femoral intercondylar notch stenosis and correlation to anterior cruciate ligament injuries. Am J Sports Med 22(2):198–302CrossRefPubMedGoogle Scholar
  95. 95.
    Shelbourne KD, Davis TJ, Klootwyk TE (1998) The relationship between intercondylar notch width of the femur and the incidence of anterior cruciate ligament tears: a prospective study. Am J Sports Med 26:402–408CrossRefPubMedGoogle Scholar
  96. 96.
    Souryal TO, Moore HA, Evans JP (1988) Bilaterality in anterior cruciate ligament injuries. Am J Sports Med 16(5):449–454CrossRefPubMedGoogle Scholar
  97. 97.
    Souryal TO, Freeman TR (1993) Intercondylar notch size and anterior cruciate ligament injuries in athletes. Am J Sports Med 21(4):535–539CrossRefPubMedGoogle Scholar
  98. 98.
    Uhorchak JM, Scoville CR, Williams GN, Arciero RA, StPierre P, Taylor DC (2003) Risk factors associated with non-contact injury of the anterior cruciate ligament. Am J Sports Med 31(6):831–842CrossRefPubMedGoogle Scholar
  99. 99.
    Zeng C, Gao S, Wei J, Yang T, Cheng L, Luo W, Tu M, Xie Q, Hu Z, Liu P, Li H, Yang T, Zhou BH, Lei G (2013) The influence of the intercondylar notch dimensions on injury of the anterior cruciate ligament: a meta-analysis. Knee Surg Sports Traumatol Arthrosc 21:804–815.  https://doi.org/10.1007/s00167-012-2166-4 CrossRefPubMedGoogle Scholar
  100. 100.
    Simon RA, Everhart JS, Nagaraja HN, Chaudhari AM (2010) A case-control study of anterior cruciate ligament volume, tibial plateau slopes and intercondylar notch dimensions in ACL-injured knees. J Biomechanics 43:1702–1707CrossRefGoogle Scholar
  101. 101.
    Sturnick DR, Vacek PM, DeSarno MJ, Gardner-Morse MG, Tourville TW, Slauterbeck JR, Johnson RJ, Shultz SJ, Beynnon BD (2015) Combined anatomic factors predicting risk of anterior cruciate ligament injury for males and females. Am J Sports Med 43(4):839–847.  https://doi.org/10.1177/0363546514563277 CrossRefPubMedGoogle Scholar
  102. 102.
    Chandrashekar N, Slauterbeck J, Hashemi J (2005) Sex-based differences in the anthropometric characteristics of the anterior cruciate ligament and its relation to Intercondylar notch geometry. Am J Sports Med 33(10):1492–1498CrossRefPubMedGoogle Scholar
  103. 103.
    Hashemi J, Chandrashekar N, Mansouri H, Slauterbeck J, Hardy DM (2008) The human anterior cruciate ligament: sex differences in ultrastructure and correlation with biomechanical properties. J Orthop Res 26:945–950CrossRefPubMedGoogle Scholar
  104. 104.
    Chandrashekar N, Mansour JM, Slauterbeck J, Hashemi J (2006) Sex-based differences in the tensile properties of the human anterior cruciate ligament. J Biomech 39:2943–2950CrossRefPubMedGoogle Scholar
  105. 105.
    Hashemi J, Chandrashekar N, Gill B, Beynnon BD, Slauterbeck J, Schutt RC, Mansouri H, Dabezies E (2008) The geometry of the tibial plateau and its influence on the biomechanics of the tibiofemoral joint. J Bone Joint Surg Am 90(12):2724–2734PubMedCentralCrossRefPubMedGoogle Scholar
  106. 106.
    Hudek R, Fuchs B, Regenfelder F, Koch PP (2011) Is noncontact ACL injury associated with the posterior tibial and meniscal slope? Clin Orthop Relat Res 469(8):2377–2384PubMedCentralCrossRefPubMedGoogle Scholar
  107. 107.
    McLean SG, Lucey SM, Rohrer S, Brandon C (2010) Knee joint anatomy predicts high-risk in vivo dynamic landing knee biomechanics. Clin Biomech 25(8):781–788CrossRefGoogle Scholar
  108. 108.
    Dejour H, Bonnin M (1994) Tibial translation after anterior cruciate ligament rupture. J Bone Joint Surg Br 76-B:745–749CrossRefGoogle Scholar
  109. 109.
    Giffin JR, Vogrin TM, Zantop T, Woo SL, Harner CD (2004) Effects of increasing tibial slope on the biomechanics of the knee. Am J Sports Med 32(2):376–382CrossRefPubMedGoogle Scholar
  110. 110.
    McLean SG, Oh YK, Palmer ML, Lucey SM, Lucarelli DG, Ashton-Miller JA, Wojtys EM (2011) The relationship between anterior tibial acceleration, tibial slope, and ACL strain during a simulated jump landing task. J Bone Joint Surg Am 93(14):1310–1317CrossRefPubMedGoogle Scholar
  111. 111.
    Lipps DB, Oh YK, Ashton-Miller JA, Wojtys EM (2012) Morphologic characteristics help explain the gender difference in peak anterior cruciate ligament strain during a simulated pivot landing. Am J Sports Med 40(1):32–40CrossRefPubMedGoogle Scholar
  112. 112.
    Shultz SJ, Pye ML, Montgomery MM, Schmitz RJ (2012) Associations between lower extremity muscle mass and multiplanar knee laxity and stiffness: a potential explanation for sex differences in frontal and transverse plane knee laxity. Am J Sports Med 40(12):2836–2844.  https://doi.org/10.1177/0363546512461744 CrossRefPubMedGoogle Scholar
  113. 113.
    Bell RD, Shultz SJ, Wideman L, Henrich VC (2012) Collagen gene variants previously associated with ACL injury risk are also associated with joint laxity. J Sports Health 4:312–318CrossRefGoogle Scholar
  114. 114.
    Deie M, Sakamaki Y, Sumen Y, Urabe Y, Ikuta Y (2002) Anterior knee laxity in young women varies with their menstrual cycle. Int Orthop 26:154–156PubMedCentralCrossRefPubMedGoogle Scholar
  115. 115.
    Eiling W, Bryant AL, Petersen W, Murphy A, Hohmann E (2007) Effects of menstrual cycle hormone fluctuations on musculoskeletal stiffness and knee joint laxity. Knee Surg Sports Traumatol Arthrosc 15(2):126–132CrossRefPubMedGoogle Scholar
  116. 116.
    Heitz NA (1999) Hormonal changes throughout the menstrual cycle and increased anterior cruciate ligament laxity in females. J Athl Train 343(2):144–149Google Scholar
  117. 117.
    Shultz SJ, Sander TC, Kirk SE, Johnson M, Perrin DH (2004) Relationship between sex hormones and anterior knee laxity across the menstrual cycle. Med Sci Sport Exerc 36(7):1165–1174CrossRefGoogle Scholar
  118. 118.
    Shultz SJ, Levine BJ, Nguyen AD, Kim HS, Montgomery MM, Perrin DH (2010) A comparison of cyclic variations in anterior knee laxity, genu Recurvatum and general joint laxity across the menstrual cycle. J Orthop Res 28:1411–1417PubMedCentralCrossRefPubMedGoogle Scholar
  119. 119.
    Shultz SJ, Schmitz RJ, Beynnon BD (2011) Variations in Varus/valgus and internal/external rotational knee laxity and stiffness across the menstrual cycle. J Orthop Res 29(3):318–325CrossRefPubMedGoogle Scholar
  120. 120.
    Shultz SJ, Dudley WN, Kong Y (2012) Identifying knee laxity profiles and associated physical characteristics. J Athl Train 47(2):159–169PubMedCentralCrossRefPubMedGoogle Scholar
  121. 121.
    Wang HM, Schmitz RJ, Shultz SJ (2015) Quadriceps muscle volume is predictive of ACL volume[abstract]. J Athl Train 15(10):1105–1106Google Scholar
  122. 122.
    Scerpella TA, Stayer TJ, Makhuli BZ (2005) Ligamentous laxity and non-contact anterior cruciate ligament tears: a gender based comparison. Orthopaedics 28(7):656–660Google Scholar
  123. 123.
    Woodford-Rogers B, Cyphert L, Denegar CR (1994) Risk factors for anterior cruciate ligament injury in high school and college athletes. J Athl Train 29(4):343–346PubMedCentralPubMedGoogle Scholar
  124. 124.
    Kramer LC, Denegar CR, Buckley WE, Hertel J (2007) Factors associated with anterior cruciate ligament injury: history in female athletes. J Sports Med Phys Fitness 47:446–454PubMedGoogle Scholar
  125. 125.
    Loudon JK, Jenkins W, Loudon KL (1996) The relationship between static posture and ACL injury in female athletes. J Orthop Sports Phys Ther 24(2):91–97CrossRefPubMedGoogle Scholar
  126. 126.
    Myer GD, Ford KR, Paterno MV, Nick TG, Hewett TE (2008) The effects of generalized joint laxity on risk of anterior cruciate ligament injury in young female athletes. Am J Sports Med 36(6):1073–1080PubMedCentralCrossRefPubMedGoogle Scholar
  127. 127.
    Ramesh R, VonArx O, Azzopardi T, Schranz PJ (2005) The risk of anterior cruciate ligament rupture with generalised joint laxity. J Bone Joint Surg Br 87-B:800–803CrossRefGoogle Scholar
  128. 128.
    Branch TP, Browne JE, Campbell JD, Siebold R, Freedberg HI, Arendt EA, Lavoie F, Neyret P, Jacobs CA (2010) Rotational laxity greater in patients with contralateral anterior cruciate ligament injury than healthy volunteers. Knee Surg Sports Traumatol Arthrosc 18(10):1379–1384CrossRefPubMedGoogle Scholar
  129. 129.
    Beynnon BD, Bernstein I, Belisle A, Brattbakk B, Devanny P, Risinger R, Durant D (2005) The effect of estradiol and progesterone on knee and ankle joint laxity. Am J Sports Med 33(9):1298–1304CrossRefPubMedGoogle Scholar
  130. 130.
    Nguyen AD, Shultz SJ (2007) Sex differences in lower extremity posture. J Orthop Sports Phys Ther 37(7):389–398CrossRefPubMedGoogle Scholar
  131. 131.
    Rozzi SL, Lephart SM, Gear WS, Fu FH (1999) Knee joint laxity and neuromuscular characteristics of male and female soccer and basketball players. Am J Sports Med 27(3):312–319CrossRefPubMedGoogle Scholar
  132. 132.
    Shultz SJ, Kirk SE, Sander TC, Perrin DH (2005) Sex differences in knee laxity change across the female menstrual cycle. J Sports Med Phys Fitness 45(4):594–603PubMedCentralPubMedGoogle Scholar
  133. 133.
    Trimble MH, Bishop MD, Buckley BD, Fields LC, Rozea GD (2002) The relationship between clinical measurements of lower extremity posture and tibial translation. Clin Biomech 17:286–290CrossRefGoogle Scholar
  134. 134.
    Hsu W, Fisk JA, Yamamoto Y, Debski RE, Woo SLY (2006) Differences in torsional joint stiffness of the knee between genders: a human cadaveric study. Am J Sports Med 34:765–770CrossRefPubMedGoogle Scholar
  135. 135.
    Markolf KL, Graff-Radford A, Amstutz HC (1978) In vivo knee stability: a quantitative assessment using an instrumented clinical testing apparatus. J Bone Joint Surg Am 60-A(5):664–674CrossRefGoogle Scholar
  136. 136.
    Sharma L, Lou C, Felson DT, Dunlop DD, Kirwan-Mellis G, Hayes KW, Weinrach D, Buchanan TS (1999) Laxity in healthy and osteoarthritic knees. Arthritis Rheum 42(5):861–870CrossRefPubMedGoogle Scholar
  137. 137.
    Shultz SJ, Schmitz RJ, Cone JR, Copple TJ, Montgomery MM, Pye ML, Tritsch AJ (2013) Multiplanar knee laxity increases during a 90-min intermittent exercise protocol. Med Sci Sports Exerc 45(8):1553–1561.  https://doi.org/10.1249/MSS.0b013e31828cb94e CrossRefPubMedGoogle Scholar
  138. 138.
    Comerford EJ, Tarlton JF, Innes JF, Johnson KA, Amis AA, Bailey AJ (2005) Metabolism and composition of the canine anterior cruciate ligament relate to differences in knee joint mechanics and predisposition to ligament rupture. J Orthop Res 23:61–66CrossRefPubMedGoogle Scholar
  139. 139.
    Quasnichka HL, Anderson-MacKenzie JM, Tarlton JF, Sims TJ, Billingham MEJ, Bailey AJ (2005) Cruciate ligament laxity and femoral intercondylar notch narrowing in early-stage knee osteoarthritis. Arthritis Rheum 52(10):3100–3109CrossRefPubMedGoogle Scholar
  140. 140.
    Wang VM, Banack TM, Tsai CW, Flatow EL, Jepsen KJ (2006) Variability in tendon and knee joint biomechanics among inbred mouse strains. J Orthop Res 24:1200–1207CrossRefPubMedGoogle Scholar
  141. 141.
    Geiser CF, Meinerz CM, Malloy PJ, Kipp K (2015) Generalized joint hypermobility alters frontal plane knee loading during a drop jump task in division 1 female athletes [abstract]. J Athl Train 15(10)Google Scholar
  142. 142.
    Shultz SJ, Carcia CR, Perrin DH (2004) Knee joint laxity affects muscle activation patterns in the healthy knee. J Electromyogr Kinesiol 14:475–483CrossRefPubMedGoogle Scholar
  143. 143.
    Shultz SJ, Shimokochi Y, Nguyen A, Ambegaonkar JP, Schmitz RJ, Beynnon BD, Perrin DH (2006) Non-weight bearing anterior knee laxity is related to anterior Tibial translation during transition from non-weight bearing to weight bearing. J Orthop Res 24(3):516–523CrossRefPubMedGoogle Scholar
  144. 144.
    Shultz SJ, Schmitz RJ (2009) Effects of transverse and frontal plane knee laxity on hip and knee Neuromechanics during drop landings. Am J Sports Med 37(9):1821–1830PubMedCentralCrossRefPubMedGoogle Scholar
  145. 145.
    Shultz SJ, Schmitz RJ, Nguyen A, Levine BJ (2010) Joint laxity is related to lower extremity energetics during a drop jump landing. Med Sci Sports Exerc 42(4):771–780PubMedCentralCrossRefPubMedGoogle Scholar
  146. 146.
    Shultz SJ, Schmitz RJ, Kong Y, Dudley WN, Beynnon BD, Nguyen AD, Kim HS, Montgomery MM (2012) Cyclic variations in multi-planar knee laxity influence landing biomechanics. Med Sci Sports Exerc 44(5):900–909CrossRefPubMedGoogle Scholar
  147. 147.
    Shultz SJ, Schmitz RJ, Cone JR, Henson RA, Montgomery MM, Pye ML, Tritsch AJ (2015) Changes in fatigue, multiplanar knee laxity, and landing biomechanics during intermittent exercise. J Athl Train.  https://doi.org/10.4085/1062-6050-49.5.08
  148. 148.
    Park SK, Stefanyshyn DJ, Ramage B, Hart DA, Ronsky JL (2009) Alterations in knee joint laxity during the menstrual cycle in healthy women leads to increases in joint loads during selected athletic movements. Am J Sports Med 37(6):1169–1177CrossRefPubMedGoogle Scholar
  149. 149.
    Park SK, Stefanyshyn DJ, Ramage H, Hart DA, Ronsky JL (2009) The relationship between knee joint laxity and knee joint mechanics during the menstrual cycle. Br J Sports Med 43(3):174–179.  https://doi.org/10.1136/bjsm.2008.049270 CrossRefPubMedGoogle Scholar
  150. 150.
    Shultz SJ, Schmitz RJ, Nguyen A, Levine BJ, Kim HS, Montgomery MM, Shimokochi Y, Beynnon BD, Perrin DH (2011) Knee laxity and its cyclic variations influence Tibiofemoral joint motion during weight acceptance. Med Sci Sports Exerc 43(2):287–295PubMedCentralCrossRefPubMedGoogle Scholar
  151. 151.
    Shultz SJ, Nguyen A, Schmitz RJ (2008) Differences in lower extremity anatomical and postural characteristics in males and females between maturation groups. JOSPT 38(3):137–149CrossRefPubMedGoogle Scholar
  152. 152.
    Hertel JN, Dorfman JH, Braham RA (2004) Lower extremity Malalignments and anterior cruciate ligament injury history. J Sports Sci Med 3:220–225PubMedCentralPubMedGoogle Scholar
  153. 153.
    Astrom M, Arvidson T (1995) Alignment and joint motion in the normal foot. J Orthop Sports Phys Ther 22(5):216–222CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Beynnon BD, Sturnick DR, Argentieri EC, Slauterbeck JR, Tourville TW, Shultz SJ, Vacek PM (2015) A sex-stratified multivariate risk factor model for anterior cruciate ligament injury. J Athl Train 50(10):1094–1096.  https://doi.org/10.4085/1062-6050-50.10.05 CrossRefPubMedCentralPubMedGoogle Scholar
  155. 155.
    Loomba-Albrecht LA, Styne DM (2009) Effect of puberty on body composition. Curr Opin Endocrinol Diabetes Obes 16(1):10–15CrossRefPubMedPubMedCentralGoogle Scholar
  156. 156.
    Montgomery MM, Shultz SJ, Schmitz RJ (2014) The effect of equalizing landing task demands on sex differences in lower extremity energy absorption. Clin Biomech 29(7):760–766CrossRefGoogle Scholar
  157. 157.
    Kulas AS, Hortobagyi T, Devita P (2010) The interaction of trunk-load and trunk-position adaptations on knee anterior shear and hamstrings muscle forces during landing. J Athl Train 45(1):5–15PubMedCentralCrossRefPubMedGoogle Scholar
  158. 158.
    Padua DA (2010) Executing a collaborative prospective risk-factor study: findings, successes, and challenges. J Athl Train 45(5):519–521.  https://doi.org/10.4085/1062-6050-45.5.519 CrossRefPubMedCentralPubMedGoogle Scholar
  159. 159.
    Taylor JB, Wang HM, Schmitz RJ, Rhea CK, Ross SE, Shultz SJ (2015) Multiplanar knee laxity and perceived function during activities of daily living and sport. J Athl Train 50(11):1199–1206.  https://doi.org/10.4085/1062-6050-50.11.10 CrossRefPubMedCentralPubMedGoogle Scholar
  160. 160.
    Ficek K, Cieszczyk P, Kaczmarczyk M, Maciejewska-Karlowska A, Sawczuk M, Cholewinski J, Leonska-Duniec A, Stepien-Slodkowska M, Zarebska A, Stepto NK, Bishop DJ, Eynon N (2013) Gene variants within the COL1A1 gene are associated with reduced anterior cruciate ligament injury in professional soccer players. J Sci Med Sport/Sports Med Aust 16(5):396–400.  https://doi.org/10.1016/j.jsams.2012.10.004 CrossRefGoogle Scholar
  161. 161.
    Khoschnau S, Melhus H, Jacobson A, Rahme H, Bengtsson H, Ribom E, Grundberg E, Mallmin H, Michaelsson K (2008) Type I collagen alpha-1 SP1 polymorphism and the risk of cruciate ligament ruptures or shoulder dislocation. Am J Sports Med 36(12):2432–2436CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    O'Connell K, Knight H, Ficek K, Leonska-Duniec A, Maciejewska-Karlowska A, Sawczuk M, Stepien-Slodkowska M, O'Cuinneagain D, van der Merwe W, Posthumus M, Cieszczyk P, Collins M (2015) Interactions between collagen gene variants and risk of anterior cruciate ligament rupture. Eur J Sport Sci 15(4):341–350.  https://doi.org/10.1080/17461391.2014.936324 CrossRefPubMedPubMedCentralGoogle Scholar
  163. 163.
    Posthumus M, September AV, Keegan M, O'Cuinneagain S, VanDerMerwe W, Schwellnus MP, Collins M (2009) Genetic risk factors for anterior cruciate ligament ruptures: COL1A1 gene variant. Br J Sports Med 43:353–356CrossRefGoogle Scholar
  164. 164.
    Posthumus M, September AV, O’Cuinneagain D, van der Merwe W, Schwellnus MP, Collins M (2009) The COL5A1 gene is associated with increased risk of anterior cruciate ligament ruptures in a female participants. Am J Sports Med 37:2234–2240CrossRefPubMedGoogle Scholar
  165. 165.
    Posthumus M, September AV, O’Cuinneagain D, van der Merwe W, Schwellnus MP, Collins M (2010) The association between the COL12A1 gene and anterior cruciate ligament ruptures. Br J Sports Med 44(16):1160–1165.  https://doi.org/10.1136/bjsm.2009.060756 CrossRefPubMedGoogle Scholar
  166. 166.
    Stepien-Slodkowska M, Ficek K, Eider J, Leonska-Duniec A, Maciejewska-Karlowska A, Sawczuk M, Zarebska A, Jastrzebski Z, Grenda A, Kotarska K, Cieszczyk P (2013) The +1245g/t polymorphisms in the collagen type I alpha 1 (col1a1) gene in polish skiers with anterior cruciate ligament injury. Biol Sport 30(1):57–60.  https://doi.org/10.5604/20831862.1029823 CrossRefPubMedCentralPubMedGoogle Scholar
  167. 167.
    Mannion S, Mtintsilana A, Posthumus M, van der Merwe W, Hobbs H, Collins M, September AV (2014) Genes encoding proteoglycans are associated with the risk of anterior cruciate ligament ruptures. Br J Sports Med 48(22):1640–1646.  https://doi.org/10.1136/bjsports-2013-093201 CrossRefPubMedGoogle Scholar
  168. 168.
    Ficek K, Stepien-Slodkowska M, Kaczmarczyk M, Maciejewska-Karlowska A, Sawczuk M, Cholewinski J, Leonska-Duniec A, Zarebska A, Cieszczyk P, Zmijewski P (2014) Does the A9285G polymorphism in collagen type XII alpha1 gene associate with the risk of anterior cruciate ligament ruptures? Balkan J Med Genet 17(1):41–46.  https://doi.org/10.2478/bjmg-2014-0022 CrossRefPubMedCentralPubMedGoogle Scholar
  169. 169.
    Rahim M, Gibbon A, Hobbs H, van der Merwe W, Posthumus M, Collins M, September AV (2014) The association of genes involved in the angiogenesis-associated signaling pathway with risk of anterior cruciate ligament rupture. J Orthop Res 32(12):1612–1618.  https://doi.org/10.1002/jor.22705 CrossRefPubMedGoogle Scholar
  170. 170.
    Collins M, Rahim M, Mannion S, Klug B, Hobbs H, van der Merwe W, Posthumus M, September AV (2015) Investigation of genes involved in the cell signalling pathway with risk of anterior cruciate ligament ruptures[abstract]. J Athl Train 15(10)Google Scholar
  171. 171.
    Malila S, Yuktanandana P, Saowaprut S, Jiamjarasrangsi W, Honsawek S (2011) Association between matrix metalloproteinase-3 polymorphism and anterior cruciate ligament ruptures. Genet Mol Res 10(4):4158–4165.  https://doi.org/10.4238/2011.October.31.1 CrossRefPubMedGoogle Scholar
  172. 172.
    Posthumus M, Collins M, Van Der Merwe L, O'cuinneagain D, Van Der Merwe W, Ribbans WJ, Schwellnus MP, Raleigh SM (2012) Matrix metalloproteinase genes on chromosome 11q22 and the risk of anterior cruciate ligament (ACL) rupture. Scand J Med Sci Sports 22(4):523–533.  https://doi.org/10.1111/j.1600-0838.2010.01270.x CrossRefPubMedGoogle Scholar
  173. 173.
    Baird AE, Carter SD, Innes JF, Ollier WE, Short AD (2014) Genetic basis of cranial cruciate ligament rupture (CCLR) in dogs. Connect Tissue Res 55(4):275–281.  https://doi.org/10.3109/03008207.2014.910199 CrossRefPubMedGoogle Scholar
  174. 174.
    Ribbans WJ, Collins M (2013) Pathology of the tendo Achillis: do our genes contribute? Bone Joint J 95-B(3):305–313.  https://doi.org/10.1302/0301-620X.95B3.30066 CrossRefPubMedGoogle Scholar
  175. 175.
    Dragoo JL, Lee RS, Benhaim P, Finerman GAM, Hame SL (2003) Relaxin receptors in the human female anterior cruciate ligament. Am J Sports Med 31(4):577–584CrossRefPubMedGoogle Scholar
  176. 176.
    Faryniarz DA, Bhargave M, Lajam C, Attia ET, Hannafin JA (2006) Quantitation of estrogen receptors and relaxin binding in human anterior cruciate ligament fibroblasts. In Vitro Cell Dev Biol-Animal 42:176–181CrossRefGoogle Scholar
  177. 177.
    Hamlet WP, Liu SH, Panossian V, Finerman GA (1997) Primary immunolocalization of androgen target cells in the human anterior cruciate ligament. J Orthop Res 15(5):657–663CrossRefPubMedGoogle Scholar
  178. 178.
    Liu SH, Al-Shaikh RA, Panossian V, Finerman GM (1996) Primary immunolocalization of estrogen and progesterone target cells in the human anterior cruciate ligament. Orthop Res Soc 14:526–533CrossRefGoogle Scholar
  179. 179.
    Lovering RM, Romani WA (2005) Effect of testosterone on the female anterior cruciate ligament. Am J Physiol Regul Integr Comp Physiol 289:R15–R22CrossRefPubMedGoogle Scholar
  180. 180.
    Shultz SJ, Wideman L, Montgomery MM, Beasley KN, Nindl BC (2012) Changes in serum collagen markers, IGF-I and knee joint laxity across the menstrual cycle. J Orthop Res 30:1405–1412.  https://doi.org/10.1002/jor.22093 CrossRefPubMedCentralPubMedGoogle Scholar
  181. 181.
    Casey E, Hameed F, Dhaher YY (2014) The muscle stretch reflex throughout the menstrual cycle. Med Sci Sports Exerc 46(3):600–609.  https://doi.org/10.1249/MSS.0000000000000134 CrossRefPubMedCentralPubMedGoogle Scholar
  182. 182.
    Arendt EA, Bershadsky B, Agel J (2002) Periodicity of noncontact anterior cruciate ligament injuries during the menstrual cycle. J Gender Spec Med 5(2):19–26Google Scholar
  183. 183.
    Beynnon BD, Johnson RJ, Braun S, Sargent M, Bernstein I, Skelly JM, Vacek PM (2006) The relationship between menstrual cycle phase and anterior cruciate ligament injury: a case-control study of recreational alpine skiers. Am J Sports Med 34(5):757–764CrossRefPubMedGoogle Scholar
  184. 184.
    Myklebust G, Engebretsen L, Braekken IH, Skjolberg A, Olsen OE, Bahr R (2003) Prevention of anterior cruciate ligament injuries in female team handball players: a prospective intervention study over three seasons. Clin J Sports Med 13(2):71–78CrossRefGoogle Scholar
  185. 185.
    Slauterbeck JR, Fuzie SF, Smith MP, Clark RJ, Xu KT, Starch DW, Hardy DM (2002) The menstrual cycle, sex hormones, and anterior cruciate ligament injury. J Athl Train 37(3):275–280PubMedCentralPubMedGoogle Scholar
  186. 186.
    Wojtys EM, Huston L, Boynton MD, Spindler KP, Lindenfeld TN (2002) The effect of menstrual cycle on anterior cruciate ligament in women as determined by hormone levels. Am J Sports Med 30(2):182–188CrossRefPubMedGoogle Scholar
  187. 187.
    Dehghan F, Muniandy S, Yusof A, Salley N (2014) Sex-steroid regulation of Relaxin receptor isoforms (RXFP1 & RXFP2) expression in the patellar tendon and lateral collateral ligament of female WKY rats. Int J Med Sci 11(2):180–191PubMedCentralCrossRefPubMedGoogle Scholar
  188. 188.
    Dehghan F, Muniandy S, Yusof A, Salley N (2014) Testosterone reduces knee passive range of motion and expression of Relaxin receptor isoforms via 5α-Dihydrotestosterone and androgen receptor binding. Int J Mol Sci 15:619–4634CrossRefGoogle Scholar
  189. 189.
    Hashem G, Zhang Q, Hayami T, Chen J, Wang W, Kapila S (2006) Relaxin and B-estradiol modulate targeted matrix degradation in specific synovial joint fibrocartilages: progesterone prevents matrix loss. Arthritis Res Ther 8(4):R98PubMedCentralCrossRefPubMedGoogle Scholar
  190. 190.
    Naqvi T, Duong TT, Hashem G, Shiga M, Zhang Q, Kapila S (2005) MMP induction by Relaxin causes cartilage matrix degradation in target synovial joints: receptor profiles correlate with matrix turnover. Arthritis Res Ther 7(1):R1–R11CrossRefPubMedGoogle Scholar
  191. 191.
    Romani W, Patrie J, Curl LA, Flaws JA (2003) The correlations between estradiol, estrone, estriol, progesterone, and sex hormone-binding globulin and anterior cruciate ligament stiffness in healthy, active females. J Women's Health 12(3):287–297CrossRefGoogle Scholar
  192. 192.
    Slauterbeck JR, Hickox MS, Beynnon BD, Hardy DM (2006) Anterior cruciate ligament biology and its relationship to injury forces. Ortho Clin North Am 37:585–591CrossRefGoogle Scholar
  193. 193.
    Yu WD, Panossian V, Hatch JD, Liu SH, Finerman GA (2001) Combined effects of estrogen and progesterone on the anterior cruciate ligament. Clin Orthop Relat Res 383:268–281CrossRefGoogle Scholar
  194. 194.
    Comerford EJ, Tarlton JF, Avery NC, Bailey AJ, Innes JF (2006) Distal femoral intercondylar notch dimensions and their relationship to composition and metabolism of the canine anterior cruciate ligament. Osteoarthr Cartil 14:273–278CrossRefPubMedGoogle Scholar
  195. 195.
    Lee C, Liu X, Smith CL, Zhang X, Hsu H, Wang D, Luo ZP (2004) The combined regulation of estrogen and cyclic tension on fibroblast biosynthesis derived from anterior cruciate ligament. Matrix Biol 23:323–329CrossRefPubMedGoogle Scholar
  196. 196.
    Dragoo JL, Castillo TN, Braun HJ, Ridley BA, Kennedy AC, Golish SR (2011) Prospective correlation between serum Relaxin concentration and anterior cruciate ligament tears among elite collegiate female athletes. Am J Sports Med 39(10):2175–2180CrossRefPubMedGoogle Scholar
  197. 197.
    Kang Y, Choi Y, Yun C, Park J, Suk K, Kim H, Park M, Lee B, Lee H, Moon S (2014) Down-regulation of collagen synthesis and matrix metalloproteinase expression in Myofibroblasts from Dupuytren nodule using adenovirus-mediated Relaxin gene therapy. J Orthop Res 32(4):515–523CrossRefPubMedGoogle Scholar
  198. 198.
    Takano M, Yamaguchi M, Nakajima R, Fujita S, Kojima T, Kasai K (2009) Effects of relaxin on collagen type I released by stretched human periodontal ligament cells. Orthod Craniofac Res 12:282–288CrossRefPubMedGoogle Scholar
  199. 199.
    Unemori EN, Amento EP (1990) Relaxin modulates synthesis and secretion of procollagenase and collagen by human dermal fibroblasts. J Biol Chem 265(18):10681–10685PubMedGoogle Scholar
  200. 200.
    Wood ML, Luthin WN, Lester GE, Dahners LE (2003) Tendon creep is potentiated by NKISK and relaxin which produce collagen fiber sliding. Iowa Orthop J 23:75–79PubMedCentralPubMedGoogle Scholar
  201. 201.
    Unemori EN, Beck S, Lee WP, Xu Y, Siegel M, Keller G, Liggitt HD, Bauer EA, Amento EP (1993) Human relaxin decreases collagen accumulation in vivo in two rodent models of fibrosis. J Invest Dermatol 101:280–285CrossRefPubMedGoogle Scholar
  202. 202.
    Dragoo JL, Padrez K, Workman R, Lindsey DP (2009) The effect of relaxin on the female anterior cruciate ligament: Analysis of mechanical properties in an animal model. Knee 16(1):69–72CrossRefPubMedGoogle Scholar
  203. 203.
    De Souza MJ, Toombs RJ, Scheid JL, O'Donnell E, West SL, Williams NI (2010) High prevalence of subtle and severe menstrual disturbances in exercising women: confirmation using daily hormone measures. Hum Reprod 25(2):491–503CrossRefPubMedGoogle Scholar
  204. 204.
    Tourville TW, Shultz SJ, Vacek PM, Knudsen EJ, Bernstein IM, Tourville KJ, Hardy DM, Johnson RJ, Slauterbeck JR, Beynnon BD (2016) Evaluation of an algorithm to predict menstrual-cycle phase at the time of injury. J Athl Train 51(1):47–56.  https://doi.org/10.4085/1062-6050-51.3.01 CrossRefPubMedCentralPubMedGoogle Scholar
  205. 205.
    Vescovi JD (2011) The menstrual cycle and anterior cruciate ligament injury risk. Sports Med 41(2):91–101CrossRefPubMedGoogle Scholar
  206. 206.
    Agel J, Bershadsky B, Arendt EA (2006) Hormonal therapy: ACL and ankle injury. Med Sci Sports Exerc 38(1):7–12CrossRefPubMedGoogle Scholar
  207. 207.
    Ruedl G, Ploner P, Linortner I, Schranz A, Fink C, Sommersacher R, Pocecco E, Nachbauer W, Burtscher M (2009) Are oral contraceptive use and menstrual cycle phase related to anterior cruciate ligament injury risk in female recreational skiers? Knee Surg Sports Traumatol Arthrosc 17(9):1065–1069.  https://doi.org/10.1007/s00167-009-0786-0 CrossRefPubMedGoogle Scholar
  208. 208.
    Burrows M, Peters CE (2007) The influence of oral contraceptives on athletic performance in female athletes. Sports Med 37(7):557–574CrossRefPubMedGoogle Scholar
  209. 209.
    Massaro M, Di Carlo C, Gargano V, Formisano C, Bifulco G, Nappi C (2010) Effects of the contraceptive patch and the vaginal ring on bone metabolism and bone mineral density: a prospective, controlled, randomized study. Contraception 881(3):209–214CrossRefGoogle Scholar
  210. 210.
    Bryant GD, Panter ME, Stelmasiak T (1975) Immunoreactive relaxin in human serum during the menstrual cycle. J Clin Endocrinol Metab 41(6):1065–1069CrossRefPubMedGoogle Scholar
  211. 211.
    Johnson MR, Carter G, Grint C, Lightman SL (1993) Relationship between ovarian steroids, gonadotropins and relaxin during the menstrual cycle. Acta Endocrinol 129(2):121–125CrossRefGoogle Scholar
  212. 212.
    Stewart DR, Celniker AC, Taylor CA, Cragun JR, Overstreet JW, Lasley BL (1990) Relaxin in the peri-implantation period. J Clin Endocrinol Metab 70(6):1771–1773CrossRefPubMedGoogle Scholar
  213. 213.
    Wreje U, Kristiansson P, Aberg H, Bystrom B, Schoultz B (1995) Serum levels of relaxin during the menstrual cycle and oral contraceptive use. Gynecol Obstet Investig 39:197–200CrossRefGoogle Scholar
  214. 214.
    Dragoo JL, Castillo TN, Korotkova TA, Kennedy AC, Kim HJ, Stewart DR (2011) Trends in serum relaxin concentration among elite collegiate female athletes. Int J Womens Health 3:19–24PubMedCentralPubMedGoogle Scholar
  215. 215.
    Wolf JM, Cameron KL, Clifton KB, Owens BD (2013) Serum relaxin levels in young athletic men are comparable with those in women. Orthopaedics 36(2):128–131CrossRefGoogle Scholar
  216. 216.
    Wolf JM, Williams AE, Delaronde S, Leger R, Clifton KB, King KB (2013) Relationship of serum relaxin to generalized and trapezial-metacarpal joint laxity. J Hand Surg 38A:721–728CrossRefGoogle Scholar
  217. 217.
    Wolf JM, Scher DL, Etchill EW, Scott F, Williams AE, Delaronde S, King KB (2014) Relationahip of relaxin hormone and thumb carpometacarpal joint arthritis. Clin Ortho Rel Res 472(4):1130–1137CrossRefGoogle Scholar
  218. 218.
    Pehrsson M, Westberg L, Landen M, Ekman A (2007) Stable serum levels of relaxin throughout the menstrual cycle: a preliminary comparison of women with premenstrual dysphoria and controls. Arch Womens Ment Health 10:147–153CrossRefPubMedGoogle Scholar
  219. 219.
    Shultz SJ, Wideman L, Montgomery MM, Levine BJ (2011) Some sex hormone profiles are consistent over time in normal menstruating females: implications for sports injury epidemiology. Br J Sports Med 45:735–742.  https://doi.org/10.1136/bjsm.2009.064931 CrossRefPubMedGoogle Scholar
  220. 220.
    van Mechelen W, Hlobil H, Kemper HC (1992) Incidence, severity, aetiology and prevention of sports injuries. A review of concepts. Sports Med 14(2):82–99CrossRefPubMedGoogle Scholar
  221. 221.
    Herman DC, Onate JA, Weinhold PS, Guskiewicz KM, Garrett WE, Yu B, Padua DA (2009) The effects of feedback with and without strength training on lower extremity biomechanics. Am J Sports Med 37(7):1301–1308CrossRefPubMedGoogle Scholar
  222. 222.
    Herrington L, Myer GD, Munro A (2013) Intra and inter-tester reliability of the tuck jump assessment. Phys Ther Sport 14(3):152–155.  https://doi.org/10.1016/j.ptsp.2012.05.005 CrossRefPubMedGoogle Scholar
  223. 223.
    Myer GD, Ford KR, Khoury J, Succop P, Hewett TE (2010) Development and validation of a clinic-based prediction tool to identify female athletes at high risk for anterior cruciate ligament injury. Am J Sports Med 38(10):2025–2033PubMedCentralCrossRefPubMedGoogle Scholar
  224. 224.
    Myer GD, Ford KR, Khoury J, Succop P, Hewett TE (2011) Biomechanics laboratory-based prediction algorithm to identify female athletes with high knee loads that increase risk of ACL injury. Br J Sports Med 45(4):245–252CrossRefPubMedGoogle Scholar
  225. 225.
    DiStefano LJ, Padua DA, DiStefano MJ, Marshall SW (2009) Influence of age, sex, technique, and exercise program on movement patterns after an anterior cruciate ligament injury prevention program in youth soccer players. Am J Sports Med 37(3):495–505.  https://doi.org/10.1177/0363546508327542 CrossRefPubMedGoogle Scholar
  226. 226.
    Padua DA, DiStefano LJ, Marshall SW, Beutler AI, de la Motte SJ, DiStefano MJ (2012) Retention of movement pattern changes after a lower extremity injury prevention program is affected by program duration. Am J Sports Med 40:300–306CrossRefPubMedGoogle Scholar
  227. 227.
    Dragoo JL, Braun HJ, Durham JL, Chen MR, Harris AH (2012) Incidence and risk factors for injuries to the anterior cruciate ligament in National Collegiate Athletic Association football: data from the 2004–2005 through 2008–2009 National Collegiate Athletic Association Injury Surveillance System. Am J Sports Med 40(5):990–995.  https://doi.org/10.1177/0363546512442336 CrossRefPubMedGoogle Scholar
  228. 228.
    Hootman JM, Dick R, Agel J (2007) Epidemiology of collegiate injuries for 15 sports: summary and recommendations for injury prevention initiatives. J Athl Train 42(2):311–319PubMedCentralPubMedGoogle Scholar
  229. 229.
    Leys T, Salmon L, Waller A, Linklater J, Pinczewski L (2012) Clinical results and risk factors for reinjury 15 years after anterior cruciate ligament reconstruction: a prospective study of hamstring and patellar tendon grafts. Am J Sports Med 40(3):595–605.  https://doi.org/10.1177/0363546511430375 CrossRefPubMedGoogle Scholar
  230. 230.
    Paterno MV, Rauh MJ, Schmitt LC, Ford KR, Hewett TE (2014) Incidence of second ACL injuries 2 years after primary ACL reconstruction and return to sport. Am J Sports Med.  https://doi.org/10.1177/0363546514530088
  231. 231.
    Pinczewski LA, Lyman J, Salmon LJ, Russell VJ, Roe J, Linklater J (2007) A 10-year comparison of anterior cruciate ligament reconstructions with hamstring tendon and patellar tendon autograft: a controlled, prospective trial. Am J Sports Med 35(4):564–574.  https://doi.org/10.1177/0363546506296042 CrossRefPubMedGoogle Scholar
  232. 232.
    Salmon L, Russell V, Musgrove T, Pinczewski L, Refshauge K (2005) Incidence and risk factors for graft rupture and contralateral rupture after anterior cruciate ligament reconstruction. Arthroscopy 21(8):948–957CrossRefPubMedGoogle Scholar
  233. 233.
    Shelbourne KD, Gray T, Haro M (2009) Incidence of subsequent injury to either knee within 5 years after anterior cruciate ligament reconstruction with patellar tendon autograft. Am J Sports Med 37(2):246–251CrossRefPubMedPubMedCentralGoogle Scholar
  234. 234.
    Kaeding CC, Pedroza AD, Reinke EK, Huston LJ, Spindler KP (2015) Risk factors and predictors of subsequent ACL injury in either knee after ACL reconstruction: prospective analysis of 2488 primary ACL reconstructions from the MOON cohort. Am J Sports Med.  https://doi.org/10.1177/0363546515578836
  235. 235.
    Paterno MV (2015) Incidence and predictors of second anterior cruciate ligament injury after primary reconstruction and return to sport. J Athl Train 50(10):1097–1099.  https://doi.org/10.4085/1062-6050-50.10.07 CrossRefPubMedCentralPubMedGoogle Scholar
  236. 236.
    Paterno MV, Schmitt LC, Ford KR, Rauh MJ, Myer GD, Huang B, Hewett TE (2010) Biomechanical measures during landing and postural stability predict second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport. Am J Sports Med 38(10):1968–1978.  https://doi.org/10.1177/0363546510376053 CrossRefPubMedCentralPubMedGoogle Scholar
  237. 237.
    McCall A, Carling C, Nedelec M, Davison M, Le Gall F, Berthoin S, Dupont G (2014) Risk factors, testing and preventative strategies for non-contact injuries in professional football: current perceptions and practices of 44 teams from various premier leagues. Br J Sports Med 48(18):1352–1357.  https://doi.org/10.1136/bjsports-2014-093439 CrossRefPubMedGoogle Scholar
  238. 238.
    Gilchrist J, Mandelbaum BR, Melancon H, Ryan GW, Silvers HJ, Griffin LY, Watanabe DS, Dick RW, Dvorak J (2008) A randomized controlled trial to prevent noncontact anterior cruciate ligament injury in female collegiate soccer players. Am J Sports Med 36(8):1476–1483CrossRefPubMedPubMedCentralGoogle Scholar
  239. 239.
    Hewett TE (1999) The effect of neuromuscular training on the incidence of knee injury in female athletes - a prospective study. Am J Sports Med 27(6):699–705CrossRefPubMedPubMedCentralGoogle Scholar
  240. 240.
    Hewett TE, Ford KR, Myer GD (2006) Anterior cruciate ligament injuries in female athletes: Part 2, a meta-analysis of neuromuscular interventions aimed at injury prevention. Am J Sports Med 34(3):1–9CrossRefGoogle Scholar
  241. 241.
    LaBella CR, Huxford MR, Grissom J, Kim KY, Peng J, Christoffel KK (2011) Effect of neuromuscular warm-up on injuries in female soccer and basketball athletes in urban public high schools: cluster randomized controlled trial. Arch Pediatr Adolesc Med 165(11):1033–1040CrossRefPubMedGoogle Scholar
  242. 242.
    Mandlebaum BR, SIlvers HJ, Watanabe DS, Knarr JF, Thomas SD, Griffin LY, Kirkendall DT, Garrett WE (2005) Effectiveness of a neuromuscular and proprioceptive training program in preventing anterior cruciate ligament injuries in female athletes. Am J Sports Med 33(7):1003–1010CrossRefGoogle Scholar
  243. 243.
    Olsen OE, Myklebust G, Engebretsen L, Holme I, Bahr R (2005) Exercises to prevent lower limb injuries in youth sports: cluster randomised controlled trial. BMJ 330(7489):449PubMedCentralCrossRefPubMedGoogle Scholar
  244. 244.
    Sadoghi P, von Keudell A, Vavken P (2012) Effectiveness of anterior cruciate ligament injury prevention training programs. J Bone Joint Surg Am 94(9):769–776.  https://doi.org/10.2106/jbjs.k.00467 CrossRefPubMedGoogle Scholar
  245. 245.
    Yoo JH, Lim BO, Ha M, Lee SW, Oh SJ, Lee YS, Kim JG (2010) A meta-analysis of the effect of neuromuscular training on the prevention of the anterior cruciate ligament injury in female athletes. Knee Surg Sports Traumatol Arthrosc 18(6):824–830CrossRefPubMedGoogle Scholar
  246. 246.
    Hertel JN, Guskiewicz KM, Kahler DM, Perrin DH (1996) Effect of lateral ankle joint anesthesia on center of balance, postural sway, and joint position sense. J Sport Rehabil 5:111–119CrossRefGoogle Scholar
  247. 247.
    Hurd WJ, Chmielewski TL, Snyder-Mackler L (2006) Perturbation-enhanced neuromuscular training alters muscle activity in female athletes. Knee Surg Sports Traumatol Arthrosc 14(1):60–69CrossRefPubMedGoogle Scholar
  248. 248.
    Leppanen M, Aaltonen S, Parkkari J, Heinonen A, Kujala UM (2014) Interventions to prevent sports related injuries: a systematic review and meta-analysis of randomised controlled trials. Sports Med 44(4):473–486.  https://doi.org/10.1007/s40279-013-0136-8 CrossRefPubMedGoogle Scholar
  249. 249.
    Myer GD, Ford KR, Brent JL, Hewett TE (2006) The effects of plyometric vs. dynamic stabilization and balance training on power, balance, and landing force in female athletes. J Strength Cond Res 20(2):345–353PubMedGoogle Scholar
  250. 250.
    Myer GD, Ford KR, McLean SG, Hewett TE (2006) The effects of plyometric versus dynamic stabilization and balance training on lower extremity biomechanics. Am J Sports Med 34(3):445–455CrossRefPubMedPubMedCentralGoogle Scholar
  251. 251.
    Pollard CD, Sigward SM, Ota S, Langford K, Powers CM (2006) The influence of in-season injury prevention training on lower-extremity kinematics during landing in female soccer players. Clin J Sport Med 16(3):223–227CrossRefPubMedGoogle Scholar
  252. 252.
    Stevenson JH, Beattie CS, Schwartz JB, Busconi BD (2015) Assessing the effectiveness of neuromuscular training programs in reducing the incidence of anterior cruciate ligament injuries in female athletes: a systematic review. Am J Sports Med 43(2):482–490.  https://doi.org/10.1177/0363546514523388 CrossRefPubMedGoogle Scholar
  253. 253.
    Ter Stege MH, Dallinga JM, Benjaminse A, Lemmink KA (2014) Effect of interventions on potential, modifiable risk factors for knee injury in team ball sports: a systematic review. Sports Med 44(10):1403–1426.  https://doi.org/10.1007/s40279-014-0216-4 CrossRefPubMedGoogle Scholar
  254. 254.
    Yu B, McClure SB, Onate JA, Guskiewicz KM, Kirkendall DT, Garrett WE (2005) Age and gender effects on lower extremity kinematics of youth soccer players in a stop-jump task. Am J Sports Med 33:1356–1364CrossRefPubMedGoogle Scholar
  255. 255.
    Hewett TE, Stroupe AL, Nance TA, Noyes FR (1996) Plyometric training in female athletes. Decreased impact forces and increased hamstring torques. Am J Sports Med 24(6):765–773CrossRefPubMedPubMedCentralGoogle Scholar
  256. 256.
    Alentorn-Geli E, Mendiguchia J, Samuelsson K, Musahl V, Karlsson J, Cugat R, Myer GD (2014) Prevention of anterior cruciate ligament injuries in sports. Part I: systematic review of risk factors in male athletes. Knee Surg Sports Traumatol Arthrosc 22(1):3–15.  https://doi.org/10.1007/s00167-013-2725-3 CrossRefPubMedGoogle Scholar
  257. 257.
    Sugimoto D, Alentorn-Geli E, Mendiguchia J, Samuelsson K, Karlsson J, Myer GD (2015) Biomechanical and neuromuscular characteristics of male athletes: implications for the development of anterior cruciate ligament injury prevention programs. Sports Med.  https://doi.org/10.1007/s40279-015-0311-1
  258. 258.
    Wulf G, Chiviacowsky S, Schiller E, Avila LT (2010) Frequent external-focus feedback enhances motor learning. Front Psychol 1:1–7CrossRefGoogle Scholar
  259. 259.
    Benjaminse A, Otten B, Gokeler A, Diercks RL, Lemmink KA (2015) Gender specific motor learning strategies: implications for ACL injury prevention [abstract]. J Athl Train 15(10)Google Scholar
  260. 260.
    Gokeler A, Welling W, Otten B, Benjaminse A (2015) Enhanced retention of drop vertical jump landing strategies assessed with the landing error scoring system[abstract]. J Athl Train 15(10)Google Scholar
  261. 261.
    Pappas E, Nightingale EJ, Simic M, Ford KR, Hewett TE, Myer GD (2014) Do exercises used in injury prevention programmes modify cutting task biomechanics? A systematic review with meta-analysis. Br J Sports Med.  https://doi.org/10.1136/bjsports-2014-093796
  262. 262.
    Barrios JA, Crossley KM, Davis IS (2010) Gait retraining to reduce the knee adduction moment through real-time visual feedback of dynamic knee alignment. J Biomechanics 43(11):2208–2213CrossRefGoogle Scholar
  263. 263.
    Crowell HP, Milner CE, Hamill J, Davis IS (2010) Reducing impact loading during running with the use of real-time visual feedback. J Orthop Sports Phys Ther 40(4):206–213CrossRefPubMedGoogle Scholar
  264. 264.
    Dowling AV, Favre J, Andriacchi TP (2012) Inertial sensor-based feedback can reduce key risk metrics for anterior cruciate ligament injury during jump landings. Am J Sports Med 40(5):1075–1083CrossRefPubMedGoogle Scholar
  265. 265.
    Ford KR, DiCesare CA, Myer GD, Hewett TE (2014) Real-time biofeedback to target risk of anterior cruciate ligament injury: a technical report for injury prevention and rehabilitation. J Sport Rehabil.  https://doi.org/10.1123/jsr.2013-0138
  266. 266.
    Munro A, Herrington L (2014) The effect of videotape augmented feedback on drop jump landing strategy: implications for anterior cruciate ligament and patellofemoral joint injury prevention. Knee 21(5):891–895.  https://doi.org/10.1016/j.knee.2014.05.011 CrossRefPubMedGoogle Scholar
  267. 267.
    Myer GD, Stroube BW, DiCesare CA, Brent JL, Ford KR, Heidt RS Jr, Hewett TE (2013) Augmented feedback supports skill transfer and reduces high-risk injury landing mechanics: a double-blind, randomized controlled laboratory study. Am J Sports Med 41(3):669–677.  https://doi.org/10.1177/0363546512472977 CrossRefPubMedCentralPubMedGoogle Scholar
  268. 268.
    Stroube BW, Myer GD, Brent JL, Ford KR, Heidt RS, Jr., Hewett TE (2013) Effects of task-specific augmented feedback on deficit modification during performance of the tuck-jump exercise. J Sport Rehabil 22 (1):7–18Google Scholar
  269. 269.
    Benjaminse A, Welling W, Otten B, Gokeler A (2015) Novel methods of instruction in ACL injury prevention programs, a systematic review. Phys Ther Sport 16(2):176–186.  https://doi.org/10.1016/j.ptsp.2014.06.003 CrossRefPubMedGoogle Scholar
  270. 270.
    DiStefano LJ, Blackburn JT, Marshall SW, Guskiewicz KM, Garrett WE, Padua DA (2011) Effects of an age-specific anterior cruciate ligament injury prevention program on lower extremity biomechanics in children. Am J Sports Med 39:949–957CrossRefPubMedPubMedCentralGoogle Scholar
  271. 271.
    Frank BS, Register-Mihalik J, Padua DA (2014) High levels of coach intent to integrate a ACL injury prevention program into training does not translate to effective implementation. J Sci Med Sport/Sports Med Aust.  https://doi.org/10.1016/j.jsams.2014.06.008
  272. 272.
    Sugimoto D, Myer GD, Bush HM, Klugman MF, Medina McKeon JM, Hewett TE (2012) Compliance with neuromuscular training and anterior cruciate ligament injury risk reduction in female athletes: a meta-analysis. J Athl Train 47(6):714–723.  https://doi.org/10.4085/1062-6050-47.6.10 CrossRefPubMedCentralPubMedGoogle Scholar
  273. 273.
    McKay CD, Steffen K, Romiti M, Finch CF, Emery CA (2014) The effect of coach and player injury knowledge, attitudes and beliefs on adherence to the FIFA 11+ programme in female youth soccer. Br J Sports Med 48(17):1281–1286.  https://doi.org/10.1136/bjsports-2014-093543 CrossRefPubMedGoogle Scholar
  274. 274.
    Joy EA, Taylor JR, Novak MA, Chen M, Fink BP, Porucznik CA (2013) Factors influencing the implementation of anterior cruciate ligament injury prevention strategies by girls soccer coaches. J Strength Cond Res 27(8):2263–2269.  https://doi.org/10.1519/JSC.0b013e31827ef12e CrossRefPubMedPubMedCentralGoogle Scholar
  275. 275.
    Lindblom H, Walden M, Carlfjord S, Hagglund M (2014) Implementation of a neuromuscular training programme in female adolescent football: 3-year follow-up study after a randomised controlled trial. Br J Sports Med 48(19):1425–1430.  https://doi.org/10.1136/bjsports-2013-093298 CrossRefPubMedGoogle Scholar
  276. 276.
    Norcross MF, Johnson ST, Bovbjerg VE, Koester MC, Hoffman MA (2015) Factors influencing high school coaches' adoption of injury prevention programs. J Sci Med Sport/Sports Med Aust.  https://doi.org/10.1016/j.jsams.2015.03.009
  277. 277.
    Ekstrand J (2013) Keeping your top players on the pitch: the key to football medicine at a professional level. Br J Sports Med 47(12):723–724CrossRefGoogle Scholar
  278. 278.
    Martinez JC, Roux E, Eason CM, Root H, Denegar CR, Mazerolle SM, Trojian TH, DiStefano LJ (2015) Factors that influence female adolescent athletes’ willingness to perform an injury prevention program[abstract]. J Athl Train 15(10)Google Scholar
  279. 279.
    Keats MR, Emery CA, Finch CF (2012) Are we having fun yet? Fostering adherence to injury preventive exercise recommendations in young athletes. Sports Med 42(3):175–184.  https://doi.org/10.2165/11597050-000000000-00000 CrossRefPubMedPubMedCentralGoogle Scholar
  280. 280.
    Myer GD, Ford KR, Palumbo JP, Hewett TE (2005) Neuromuscular training improves performance and lower-extremity biomechanics in female athletes. J Strength Cond Res 19(1):51–60PubMedPubMedCentralGoogle Scholar
  281. 281.
    O'Brien J, Finch CF (2014) The implementation of musculoskeletal injury-prevention exercise programmes in team ball sports: a systematic review employing the RE-AIM framework. Sports Med 44(9):1305–1318.  https://doi.org/10.1007/s40279-014-0208-4 CrossRefPubMedPubMedCentralGoogle Scholar
  282. 282.
    Padua DA, Frank B, Donaldson A, de la Motte S, Cameron KL, Beutler AI, DiStefano LJ, Marshall SW (2014) Seven steps for developing and implementing a preventive training program: lessons learned from JUMP-ACL and beyond. Clin Sports Med 33(4):615–632.  https://doi.org/10.1016/j.csm.2014.06.012 CrossRefPubMedCentralPubMedGoogle Scholar
  283. 283.
    Swart E, Redler L, Fabricant PD, Mandelbaum BR, Ahmad CS, Wang YC (2014) Prevention and screening programs for anterior cruciate ligament injuries in young athletes: a cost-effectiveness analysis. J Bone Joint Surg Am 96(9):705–711.  https://doi.org/10.2106/jbjs.m.00560 CrossRefPubMedCentralPubMedGoogle Scholar
  284. 284.
    Myer GD, Sugimoto D, Thomas S, Hewett TE (2013) The influence of age on the effectiveness of neuromuscular training to reduce anterior cruciate ligament injury in female athletes: a meta-analysis. Am J Sports Med 41(1):203–215.  https://doi.org/10.1177/0363546512460637 CrossRefPubMedPubMedCentralGoogle Scholar
  285. 285.
    Sugimoto D, Myer GD, Foss KD, Hewett TE (2015) Specific exercise effects of preventive neuromuscular training intervention on anterior cruciate ligament injury risk reduction in young females: meta-analysis and subgroup analysis. Br J Sports Med 49(5):282–289.  https://doi.org/10.1136/bjsports-2014-093461 CrossRefPubMedPubMedCentralGoogle Scholar
  286. 286.
    Taylor JB, Waxman JP, Richter SJ, Shultz SJ (2013) Evaluation of the effectiveness of anterior cruciate ligament injury prevention programme training components: a systematic review and meta-analysis. Br J Sports Med.  https://doi.org/10.1136/bjsports-2013-092358
  287. 287.
    Chiviacowsky S, Wulf G (2002) Self-controlled feedback: does it enhance learning because performers get feedback when they need it? Res Q Exerc Sport 73(4):408–415.  https://doi.org/10.1080/02701367.2002.10609040 CrossRefPubMedGoogle Scholar
  288. 288.
    Beaulieu ML, McLean SG (2012) Sex-dimorphic landing mechanics and their role within the noncontact ACL injury mechanism: evidence, limitations and directions. Sports Med Arthrosc Rehabil Ther Technol 4(10):1–13Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of KinesologyUniv North Carolina at GreensboroGreensboroUSA
  2. 2.School Health and Human SciencesUNC at GreensboroGreensboroUSA

Personalised recommendations