Role of Isokinetic Testing and Training After ACL Injury and Reconstruction

  • George J. DaviesEmail author
  • Bryan Riemann
  • Todd Ellenbecker


This chapter focuses on the role of isokinetics with regard to testing and training after ACL injury and reconstruction. This includes the use of isokinetics for screening, evaluation, treatment, rehabilitation, and criteria for discharge to return to sports. Specific considerations for testing after ACL reconstruction are detailed. Testing and training protocols are provided.


Isokinetic testing Isokinetic training ACL testing ACL rehabilitation 


  1. 1.
    Sugimoto D, LeBlanc JC, Wooley SE, Micheli LJ, Kramer DE (2016) The effectiveness of a functional knee brace on joint-position sense in anterior cruciate ligament-reconstructed individuals. J Sport Rehabil 25(2):190–194. CrossRefPubMedGoogle Scholar
  2. 2.
    Ackerman IN, Kemp JL, Crossley KM, Culvenor AG, Hinman RS (2017) Hip and knee osteoarthritis affects younger people, too. J Orthop Sports Phys Ther 47(2):67–79. CrossRefPubMedGoogle Scholar
  3. 3.
    Culvenor AG, Collins NJ, Guermazi A, Cook JL, Vicenzino B, Khan KM, Beck N, van Leeuwen J, Crossley KM (2015) Early knee osteoarthritis is evident one year following anterior cruciate ligament reconstruction: a magnetic resonance imaging evaluation. Arthritis Rheumatol 67(4):946–955. CrossRefPubMedGoogle Scholar
  4. 4.
    Frobell RB, Le Graverand MP, Buck R, Roos EM, Roos HP, Tamez-Pena J, Totterman S, Lohmander LS (2009) The acutely ACL injured knee assessed by MRI: changes in joint fluid, bone marrow lesions, and cartilage during the first year. Osteoarthritis Cartilage 17(2):161–167. CrossRefPubMedGoogle Scholar
  5. 5.
    Carpenter MR, Carpenter RL, Peel J, Zukley LM, Angelopoulou KM, Fischer I, Angelopoulos TJ, Rippe JM (2006) The reliability of isokinetic and isometric leg strength measures among individuals with symptoms of mild osteoarthritis. J Sports Med Phys Fitness 46(4):585–589PubMedGoogle Scholar
  6. 6.
    Culvenor AG, Cook JL, Collins NJ, Crossley KM (2013) Is patellofemoral joint osteoarthritis an under-recognised outcome of anterior cruciate ligament reconstruction? A narrative literature review. Br J Sports Med 47(2):66–70. CrossRefPubMedGoogle Scholar
  7. 7.
    Keays SL, Newcombe PA, Bullock-Saxton JE, Bullock MI, Keays AC (2010) Factors involved in the development of osteoarthritis after anterior cruciate ligament surgery. Am J Sports Med 38(3):455–463. CrossRefPubMedGoogle Scholar
  8. 8.
    Maerz T, Newton MD, Kurdziel MD, Altman P, Anderson K, Matthew HW, Baker KC (2016) Articular cartilage degeneration following anterior cruciate ligament injury: a comparison of surgical transection and noninvasive rupture as preclinical models of post-traumatic osteoarthritis. Osteoarthritis Cartilage 24(11):1918–1927. CrossRefPubMedGoogle Scholar
  9. 9.
    Risberg MA, Oiestad BE, Gunderson R, Aune AK, Engebretsen L, Culvenor A, Holm I (2016) Changes in knee osteoarthritis, symptoms, and function after anterior cruciate ligament reconstruction: a 20-year prospective follow-up study. Am J Sports Med 44:1215–1224. CrossRefPubMedGoogle Scholar
  10. 10.
    Smith MV, Nepple JJ, Wright RW, Matava MJ, Brophy RH (2016) Knee osteoarthritis is associated with previous meniscus and anterior cruciate ligament surgery among Elite College American Football Athletes. Sports Health 9:247–251. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Feucht MJ, Cotic M, Saier T, Minzlaff P, Plath JE, Imhoff AB, Hinterwimmer S (2016) Patient expectations of primary and revision anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 24(1):201–207. CrossRefPubMedGoogle Scholar
  12. 12.
    Filbay SR (2017) Longer-term quality of life following ACL injury and reconstruction. Br J Sports Med 52:208–209. CrossRefPubMedGoogle Scholar
  13. 13.
    Lentz TA, Zeppieri G Jr, George SZ, Tillman SM, Moser MW, Farmer KW, Chmielewski TL (2015) Comparison of physical impairment, functional, and psychosocial measures based on fear of reinjury/lack of confidence and return-to-sport status after ACL reconstruction. Am J Sports Med 43(2):345–353. CrossRefPubMedGoogle Scholar
  14. 14.
    Lepley LK (2015) Deficits in quadriceps strength and patient-oriented outcomes at return to activity after ACL reconstruction: a review of the current literature. Sports Health 7(3):231–238. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Roi GS, Creta D, Nanni G, Marcacci M, Zaffagnini S, Snyder-Mackler L (2005) Return to official Italian first division soccer games within 90 days after anterior cruciate ligament reconstruction: a case report. J Orthop Sports Phys Ther 35(2):52–66CrossRefPubMedGoogle Scholar
  16. 16.
    Nagelli CV, Hewett TE (2017) Should return to sport be delayed until 2 years after anterior cruciate ligament reconstruction? biological and functional considerations. Sports Med 47(2):221–232. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Ardern CL, Taylor NF, Feller JA, Webster KE (2014) Fifty-five per cent return to competitive sport following anterior cruciate ligament reconstruction surgery: an updated systematic review and meta-analysis including aspects of physical functioning and contextual factors. Br J Sports Med 48(21):1543–1552. CrossRefPubMedGoogle Scholar
  18. 18.
    Hislop HJ, Perrine JJ (1967) The isokinetic concept of exercise. Phys Ther 47(2):114–117CrossRefPubMedGoogle Scholar
  19. 19.
    Thistle HG, Hislop HJ, Moffroid M, Lowman EW (1967) Isokinetic contraction: a new concept of resistive exercise. Arch Phys Med Rehabil 48(6):279–282PubMedGoogle Scholar
  20. 20.
    Davies GJ (1984) A compendium of isokinetics in clinical usage, 1st edn. S & S Publishers, LaCrosse, WIGoogle Scholar
  21. 21.
    Failla MJ, Logerstedt DS, Grindem H, Axe MJ, Risberg MA, Engebretsen L, Huston LJ, Spindler KP, Snyder-Mackler L (2016) Does extended preoperative rehabilitation influence outcomes 2 years after ACL reconstruction? a comparative effectiveness study between the MOON and Delaware-Oslo ACL cohorts. Am J Sports Med 44(10):2608–2614. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Grindem H, Snyder-Mackler L, Moksnes H, Engebretsen L, Risberg MA (2016) Simple decision rules can reduce reinjury risk by 84% after ACL reconstruction: the Delaware-Oslo ACL cohort study. Br J Sports Med 50(13):804–808. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kruse LM, Gray B, Wright RW (2012) Rehabilitation after anterior cruciate ligament reconstruction: a systematic review. J Bone Joint Surg Am 94(19):1737–1748. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Ellenbecker TS, Davies GJ (2001) Closed kinetic chain exercises: a comprehensive guide to multiple joint exercise. Human Kinetics, Champaign, ILGoogle Scholar
  25. 25.
    Bonazza NA, Smuin D, Onks CA, Silvis ML, Dhawan A (2017) Reliability, validity, and injury predictive value of the functional movement screen. Am J Sports Med 45(3):725–732. CrossRefPubMedGoogle Scholar
  26. 26.
    Boyle MJ, Butler RJ, Queen RM (2016) Functional movement competency and dynamic balance after anterior cruciate ligament reconstruction in adolescent patients. J Pediatr Orthop 36(1):36–41. CrossRefPubMedGoogle Scholar
  27. 27.
    Whittaker JL, Booysen N, de la Motte S, Dennett L, Lewis CL, Wilson D, McKay C, Warner M, Padua D, Emery CA, Stokes M (2017) Predicting sport and occupational lower extremity injury risk through movement quality screening: a systematic review. Br J Sports Med 51(7):580–585. CrossRefPubMedGoogle Scholar
  28. 28.
    Whiteley R, Jacobsen P, Prior S, Skazalski C, Otten R, Johnson A (2012) Correlation of isokinetic and novel hand-held dynamometry measures of knee flexion and extension strength testing. J Sci Med Sport 15(5):444–450. CrossRefPubMedGoogle Scholar
  29. 29.
    Blackburn JR, Morrissey MC (1998) The relationship between open and closed kinetic chain strength of the lower limb and jumping performance. J Orthop Sports Phys Ther 27(6):430–435. CrossRefPubMedGoogle Scholar
  30. 30.
    Iossifidou A, Baltzopoulos V, Giakas G (2005) Isokinetic knee extension and vertical jumping: are they related? J Sports Sci 23(10):1121–1127. CrossRefPubMedGoogle Scholar
  31. 31.
    Ithurburn MP, Paterno MV, Ford KR, Hewett TE, Schmitt LC (2015) Young athletes with quadriceps femoris strength asymmetry at return to sport after anterior cruciate ligament reconstruction demonstrate asymmetric single-leg drop-landing mechanics. Am J Sports Med 43(11):2727–2737. CrossRefPubMedGoogle Scholar
  32. 32.
    Newman MA, Tarpenning KM, Marino FE (2004) Relationships between isokinetic knee strength, single-sprint performance, and repeated-sprint ability in football players. J Strength Cond Res 18(4):867–872. CrossRefPubMedGoogle Scholar
  33. 33.
    Rouis M, Coudrat L, Jaafar H, Filliard JR, Vandewalle H, Barthelemy Y, Driss T (2015) Assessment of isokinetic knee strength in elite young female basketball players: correlation with vertical jump. J Sports Med Phys Fitness 55(12):1502–1508PubMedGoogle Scholar
  34. 34.
    Ucar M, Koca I, Eroglu M, Eroglu S, Sarp U, Arik HO, Yetisgin A (2014) Evaluation of open and closed kinetic chain exercises in rehabilitation following anterior cruciate ligament reconstruction. J Phys Ther Sci 26(12):1875–1878. CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Bell DR, Trigsted SM, Post EG, Walden CE (2016) Hip strength in patients with quadriceps strength deficits after ACL reconstruction. Med Sci Sports Exerc 48(10):1886–1892. CrossRefPubMedGoogle Scholar
  36. 36.
    Brent JL, Myer GD, Ford KR, Paterno MV, Hewett TE (2013) The effect of sex and age on isokinetic hip-abduction torques. J Sport Rehabil 22(1):41–46CrossRefPubMedGoogle Scholar
  37. 37.
    Hannon J, Wang-Price S, Goto S, Garrison JC, Bothwell JM (2017) Do muscle strength deficits of the uninvolved hip and knee exist in young athletes before anterior cruciate ligament reconstruction? Orthop J Sports Med 5(1):2325967116683941. CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Nicholas JA, Strizak AM, Veras G (1976) A study of thigh muscle weakness in different pathological states of the lower extremity. Am J Sports Med 4(6):241–248. CrossRefPubMedGoogle Scholar
  39. 39.
    Gleim GW, Nicholas JA, Webb JN (1978) Isokinetic evaluation following leg injuries. Phys Sportsmed 6(8):75–82. CrossRefPubMedGoogle Scholar
  40. 40.
    Bolz S, Davies GJ (1984) Leg length differences and correlation with total leg strength. J Orthop Sports Phys Ther 6(2):123–129CrossRefPubMedGoogle Scholar
  41. 41.
    Hewett TE, Myer GD, Ford KR, Heidt RS Jr, Colosimo AJ, McLean SG, van den Bogert AJ, Paterno MV, Succop P (2005) Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med 33(4):492–501. CrossRefPubMedGoogle Scholar
  42. 42.
    Hewett TE, Ford KR, Myer GD (2006) Anterior cruciate ligament injuries in female athletes: part 2, a meta-analysis of neuromuscular interventions aimed at injury prevention. Am J Sports Med 34(3):490–498. CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Davies GJ (1994) A compendium of isokinetics in clinical usage, 4th edn. S & S Publishers, LaCrosse, WIGoogle Scholar
  44. 44.
    Wilk KE, Andrews JR (1993) The effects of pad placement and angular velocity on tibial displacement during isokinetic exercise. J Orthop Sports Phys Ther 17(1):24–30. CrossRefPubMedGoogle Scholar
  45. 45.
    Karanikas K, Arampatzis A, Bruggemann GP (2009) Motor task and muscle strength followed different adaptation patterns after anterior cruciate ligament reconstruction. Eur J Phys Rehabil Med 45(1):37–45PubMedGoogle Scholar
  46. 46.
    Patel RR, Hurwitz DE, Bush-Joseph CA, Bach BR Jr, Andriacchi TP (2003) Comparison of clinical and dynamic knee function in patients with anterior cruciate ligament deficiency. Am J Sports Med 31(1):68–74CrossRefPubMedGoogle Scholar
  47. 47.
    Petschnig R, Baron R, Albrecht M (1998) The relationship between isokinetic quadriceps strength test and hop tests for distance and one-legged vertical jump test following anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther 28(1):23–31CrossRefPubMedGoogle Scholar
  48. 48.
    Wilk KE, Romaniello WT, Soscia SM, Arrigo CA, Andrews JR (1994) The relationship between subjective knee scores, isokinetic testing, and functional testing in the ACL-reconstructed knee. J Orthop Sports Phys Ther 20(2):60–73CrossRefPubMedGoogle Scholar
  49. 49.
    Angelozzi M, Madama M, Corsica C, Calvisi V, Properzi G, McCaw ST, Cacchio A (2012) Rate of force development as an adjunctive outcome measure for return-to-sport decisions after anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther 42(9):772–780. CrossRefPubMedGoogle Scholar
  50. 50.
    Flosadottir V, Roos EM, Ageberg E (2016) Muscle function is associated with future patient-reported outcomes in young adults with ACL injury. BMJ Open Sport Exerc Med 2(1):e000154. CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Kline PW, Morgan KD, Johnson DL, Ireland ML, Noehren B (2015) Impaired quadriceps rate of torque development and knee mechanics after anterior cruciate ligament reconstruction with patellar tendon autograft. Am J Sports Med 43(10):2553–2558. CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Kuenze C, Hertel J, Saliba S, Diduch DR, Weltman A, Hart JM (2015) Clinical thresholds for quadriceps assessment after anterior cruciate ligament reconstruction. J Sport Rehabil 24(1):36–46. CrossRefPubMedGoogle Scholar
  53. 53.
    Lepley AS, Gribble PA, Thomas AC, Tevald MA, Sohn DH, Pietrosimone BG (2015) Quadriceps neural alterations in anterior cruciate ligament reconstructed patients: a 6-month longitudinal investigation. Scand J Med Sci Sports 25(6):828–839. CrossRefPubMedGoogle Scholar
  54. 54.
    Matheson JW, Kernozek TW, Fater D, Davies G (2001) Quadriceps activity applied load during knee extension exercises. Med Sci Sports Exerc 33:1713–1725CrossRefPubMedGoogle Scholar
  55. 55.
    Pietrosimone B, Lepley AS, Harkey MS, Luc-Harkey BA, Blackburn JT, Gribble PA, Spang JT, Sohn DH (2016) Quadriceps strength predicts self-reported function post-ACL reconstruction. Med Sci Sports Exerc 48(9):1671–1677. CrossRefPubMedGoogle Scholar
  56. 56.
    Davies GJ (2017) Individualizing the return to play decision after ACL reconstruction. Oper Tech Ortho 27:70–78Google Scholar
  57. 57.
    Davies GJ, McCarty E, Provencher MT, Manske R, Ellenbecker TS (2017) ACL return to sport guidelines and criteria. Current Rev Musculoskel Med 10(3):307–314CrossRefGoogle Scholar
  58. 58.
    Binder D, Schamus E, Brown-Cross D (2001) Peak torque, total work and power values when comparing individuals with Q-angle differences. Isok Exerc Sci 9:27–30Google Scholar
  59. 59.
    Bryant AL, Pua YH, Clark RA (2009) Morphology of knee extension torque-time curves following anterior cruciate ligament injury and reconstruction. J Bone Joint Surg Am 91(6):1424–1431. CrossRefPubMedGoogle Scholar
  60. 60.
    Czaplicki A, Jarocka M, Walawski J (2015) Isokinetic identification of knee joint torques before and after anterior cruciate ligament reconstruction. PLoS One 10(12):e0144283. CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Davies GJ, Heiderscheit BS, Brinks K (2000) Isokinetic test interpretation. In: Brown LE (ed) Isokinetics in human performance. Human Kinetics, Champaign, IL, pp 3–24Google Scholar
  62. 62.
    Davies GJ, Durall C, Matheson JW (2015) Isokinetic testing and exercise. In: Placzek JD, Boyce DA (eds) Orthopaedic physical therapy secrets, 3rd edn. Hanley & Belfus, Inc., PhiladelphiaGoogle Scholar
  63. 63.
    Eitzen I, Eitzen TJ, Holm I, Snyder-Mackler L, Risberg MA (2010) Anterior cruciate ligament-deficient potential copers and noncopers reveal different isokinetic quadriceps strength profiles in the early stage after injury. Am J Sports Med 38(3):586–593. CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Eitzen I, Grindem H, Nilstad A, Moksnes H, Risberg MA (2016) Quantifying quadriceps muscle strength in patients with ACL injury, focal cartilage lesions, and degenerative meniscus tears: differences and clinical implications. Orthop J Sports Med 4(10):2325967116667717. CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Jones PA, Bampouras TM (2010) A comparison of isokinetic and functional methods of assessing bilateral strength imbalance. J Strength Cond Res 24(6):1553–1558. CrossRefPubMedGoogle Scholar
  66. 66.
    Ford KR, Myer GD, Hewett TE (2003) Valgus knee motion during landing in high school female and male basketball players. Med Sci Sports Exerc 35(10):1745–1750. CrossRefPubMedGoogle Scholar
  67. 67.
    Myer GD, Ford KR, Hewett TE (2004) Rationale and clinical techniques for anterior cruciate ligament injury prevention among female athletes. J Athl Train 39(4):352–364PubMedPubMedCentralGoogle Scholar
  68. 68.
    Kadija M, Knezevic OM, Milovanovic D, Nedeljkovic A, Mirkov DM (2016) The effect of anterior cruciate ligament reconstruction on hamstring and quadriceps muscle function outcome ratios in male athletes. Srp Arh Celok Lek 144(3–4):151–157CrossRefPubMedGoogle Scholar
  69. 69.
    Kim HJ, Lee JH, Ahn SE, Park MJ, Lee DH (2016) Influence of anterior cruciate ligament tear on thigh muscle strength and hamstring-to-quadriceps ratio: a meta-analysis. PLoS One 11(1):e0146234. CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Fischer F, Fink C, Herbst E, Hoser C, Hepperger C, Blank C, Gfoller P (2017) Higher hamstring-to-quadriceps isokinetic strength ratio during the first post-operative months in patients with quadriceps tendon compared to hamstring tendon graft following ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 26:418–425. CrossRefPubMedGoogle Scholar
  71. 71.
    Hiemstra LA, Webber S, MacDonald PB, Kriellaars DJ (2004) Hamstring and quadriceps strength balance in normal and hamstring anterior cruciate ligament-reconstructed subjects. Clin J Sport Med 14(5):274–280CrossRefPubMedGoogle Scholar
  72. 72.
    Ford KR, Myer GD, Schmitt LC, Uhl TL, Hewett TE (2011) Preferential quadriceps activation in female athletes with incremental increases in landing intensity. J Appl Biomech 27(3):215–222CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Myer GD, Ford KR, Barber Foss KD, Liu C, Nick TG, Hewett TE (2009) The relationship of hamstrings and quadriceps strength to anterior cruciate ligament injury in female athletes. Clin J Sport Med 19(1):3–8. CrossRefPubMedGoogle Scholar
  74. 74.
    Nakamura T, Kurosawa H, Kawahara H, Watarai K, Miyashita H (1986) Muscle fiber atrophy in the quadriceps in knee-joint disorders. Histochemical studies on 112 cases. Arch Orthop Trauma Surg 105(3):163–169CrossRefPubMedGoogle Scholar
  75. 75.
    Davies GJ (1988) Isokinetic rehabilitation of the knee. In: Mangine R (ed) Physical therapy and rehabilitation of the knee. Churchill-Livingstone, New York, pp 221–243Google Scholar
  76. 76.
    Davies GJ (1995) Descriptive study comparing OKC and CKC isokinetic testing of the lower extremity in 300 patients with selected knee pathologies. In: WCPT Proceedings, Washington, DCGoogle Scholar
  77. 77.
    Eitzen I, Moksnes H, Snyder-Mackler L, Risberg MA (2010) A progressive 5-week exercise therapy program leads to significant improvement in knee function early after anterior cruciate ligament injury. J Orthop Sports Phys Ther 40(11):705–721. CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Glass R, Waddell J, Hoogenboom B (2010) The effects of open versus closed kinetic chain exercises on patients with ACL deficient or reconstructed knees: a systematic review. N Am J Sports Phys Ther 5(2):74–84PubMedPubMedCentralGoogle Scholar
  79. 79.
    Hooper DM, Morrissey MC, Drechsler W, Morrissey D, King J (2001) Open and closed kinetic chain exercises in the early period after anterior cruciate ligament reconstruction. Improvements in level walking, stair ascent, and stair descent. Am J Sports Med 29(2):167–174CrossRefPubMedGoogle Scholar
  80. 80.
    Manske R, Davies GJ, Decario M (2009) Rehabilitation concepts following ACL reconstructions. In: Kibler B, Ellenbecker TS (eds) Orthopaedic knowledge update: sports medicine 4. American Academy of Orthopaedic Surgery, Rosemont, ILGoogle Scholar
  81. 81.
    Mikkelsen C, Werner S, Eriksson E (2000) Closed kinetic chain alone compared to combined open and closed kinetic chain exercises for quadriceps strengthening after anterior cruciate ligament reconstruction with respect to return to sports: a prospective matched follow-up study. Knee Surg Sports Traumatol Arthrosc 8(6):337–342CrossRefPubMedGoogle Scholar
  82. 82.
    Morrissey MC, Drechsler WI, Morrissey D, Knight PR, Armstrong PW, McAuliffe TB (2002) Effects of distally fixated versus nondistally fixated leg extensor resistance training on knee pain in the early period after anterior cruciate ligament reconstruction. Phys Ther 82(1):35–43CrossRefPubMedGoogle Scholar
  83. 83.
    Morrissey MC, Hooper DM, Drechsler WI, Hill HJ (2004) Relationship of leg muscle strength and knee function in the early period after anterior cruciate ligament reconstruction. Scand J Med Sci Sports 14(6):360–366. CrossRefPubMedGoogle Scholar
  84. 84.
    Perry MC, Morrissey MC, King JB, Morrissey D, Earnshaw P (2005) Effects of closed versus open kinetic chain knee extensor resistance training on knee laxity and leg function in patients during the 8- to 14-week post-operative period after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 13(5):357–369CrossRefPubMedGoogle Scholar
  85. 85.
    Sekir U, Gur H, Akova B (2010) Early versus late start of isokinetic hamstring-strengthening exercise after anterior cruciate ligament reconstruction with patellar tendon graft. Am J Sports Med 38(3):492–500. CrossRefPubMedGoogle Scholar
  86. 86.
    Tagesson S, Oberg B, Good L, Kvist J (2008) A comprehensive rehabilitation program with quadriceps strengthening in closed versus open kinetic chain exercise in patients with anterior cruciate ligament deficiency: a randomized clinical trial evaluating dynamic tibial translation and muscle function. Am J Sports Med 36(2):298–307CrossRefPubMedGoogle Scholar
  87. 87.
    Timm KE (1988) Postsurgical knee rehabilitation. A five year study of four methods and 5,381 patients. Am J Sports Med 16(5):463–468. CrossRefPubMedGoogle Scholar
  88. 88.
    Wright RW, Preston E, Fleming BC, Amendola A, Andrish JT, Bergfeld JA, Dunn WR, Kaeding C, Kuhn JE, Marx RG, McCarty EC, Parker RC, Spindler KP, Wolcott M, Wolf BR, Williams GN (2008) A systematic review of anterior cruciate ligament reconstruction rehabilitation: part II: open versus closed kinetic chain exercises, neuromuscular electrical stimulation, accelerated rehabilitation, and miscellaneous topics. J Knee Surg 21(3):225–234CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Ariki PK, Davies GJ, Siewart M (1985) Optimum rest interval between isokinetic velocity spectrum rehabilitation sets. Phys Ther 65(5):733–734Google Scholar
  90. 90.
    Ariki PK, Davies GJ, Siewart M (1985) Optimum rest interval between isokinetic velocity spectrum rehabilitation speeds. Phys Ther 65(5):735–736Google Scholar
  91. 91.
    Mirkov D, Knezevic OM, Maffiuletti NA (2000) Velocity specificity in early training of the knee extensors after anterior cruciate ligament reconstruction. Eur J Appl Physiol 81(6):493–496CrossRefGoogle Scholar
  92. 92.
    Timm KE (1986) Validation of the Johnson anti-shear accessory as an accurate and effective clinical isokinetic instrument. J Orthop Sports Phys Ther 7(6):298–303CrossRefPubMedGoogle Scholar
  93. 93.
    Davies GJ, Gould J, Halbach J (1984) Computerized Cybex testing of ACL reconstruction assessing quadriceps peak torque, TAE, total work, and average power. Med Sci Sports Exerc 16(2):204CrossRefGoogle Scholar
  94. 94.
    Ebert JR, Smith A, Edwards PK, Ackland TR (2014) The progression of isokinetic knee strength after matrix-induced autologous chondrocyte implantation: implications for rehabilitation and return to activity. J Sport Rehabil 23(3):244–258. CrossRefPubMedGoogle Scholar
  95. 95.
    Harkey MS, Luc-Harkey BA, Lepley AS, Grindstaff TL, Gribble P, Blackburn JT, Spang JT, Pietrosimone B (2016) Persistent muscle inhibition after anterior cruciate ligament reconstruction: role of reflex excitability. Med Sci Sports Exerc 48(12):2370–2377. CrossRefPubMedGoogle Scholar
  96. 96.
    Harput G, Kilinc HE, Ozer H, Baltaci G, Mattacola CG (2015) Quadriceps and hamstring strength recovery during early neuromuscular rehabilitation after ACL hamstring-tendon autograft reconstruction. J Sport Rehabil 24(4):398–404. CrossRefPubMedGoogle Scholar
  97. 97.
    Kuenze CM, Blemker SS, Hart JM (2016) Quadriceps function relates to muscle size following ACL reconstruction. J Orthop Res 34(9):1656–1662. CrossRefPubMedGoogle Scholar
  98. 98.
    Oiestad BE, Holm I, Gunderson R, Myklebust G, Risberg MA (2010) Quadriceps muscle weakness after anterior cruciate ligament reconstruction: a risk factor for knee osteoarthritis? Arthritis Care Res (Hoboken) 62(12):1706–1714. CrossRefGoogle Scholar
  99. 99.
    Palmieri-Smith RM, Lepley LK (2015) Quadriceps strength asymmetry after anterior cruciate ligament reconstruction alters knee joint biomechanics and functional performance at time of return to activity. Am J Sports Med 43(7):1662–1669. CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Thomas AC, Wojtys EM, Brandon C, Palmieri-Smith RM (2016) Muscle atrophy contributes to quadriceps weakness after anterior cruciate ligament reconstruction. J Sci Med Sport 19(1):7–11. CrossRefPubMedGoogle Scholar
  101. 101.
    Zwolski C, Schmitt LC, Quatman-Yates C, Thomas S, Hewett TE, Paterno MV (2015) The influence of quadriceps strength asymmetry on patient-reported function at time of return to sport after anterior cruciate ligament reconstruction. Am J Sports Med 43(9):2242–2249. CrossRefPubMedGoogle Scholar
  102. 102.
    Eitzen I, Holm I, Risberg MA (2009) Preoperative quadriceps strength is a significant predictor of knee function two years after anterior cruciate ligament reconstruction. Br J Sports Med 43(5):371–376. CrossRefPubMedGoogle Scholar
  103. 103.
    Davies GJ (1995) Open kinetic chain assessment and rehabilitation. Ath Train: Sports Health Care Per 1(4):347–370Google Scholar
  104. 104.
    Davies GJ, Ellenbecker TS (1992) Eccentric isokinetics. Orthop Phys Ther Clin North Am 1(2):297–336Google Scholar
  105. 105.
    Feiring DC, Ellenbecker TS, Derscheid GL (1990) Test-retest reliability of the biodex isokinetic dynamometer. J Orthop Sports Phys Ther 11(7):298–300CrossRefPubMedGoogle Scholar
  106. 106.
    Ernst GP, Saliba E, Diduch DR, Hurwitz SR, Ball DW (2000) Lower extremity compensations following anterior cruciate ligament reconstruction. Phys Ther 80(3):251–260PubMedGoogle Scholar
  107. 107.
    Segal NA, Glass NA, Torner J, Yang M, Felson DT, Sharma L, Nevitt M, Lewis CE (2010) Quadriceps weakness predicts risk for knee joint space narrowing in women in the MOST cohort. Osteoarthritis Cartilage 18(6):769–775. CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    van Melick N, van Cingel RE, Brooijmans F, Neeter C, van Tienen T, Hullegie W, Nijhuis-van der Sanden MW (2016) Evidence-based clinical practice update: practice guidelines for anterior cruciate ligament rehabilitation based on a systematic review and multidisciplinary consensus. Br J Sports Med 50(24):1506–1515. CrossRefPubMedGoogle Scholar
  109. 109.
    Fujiya H, Kousa P, Fleming BC, Churchill DL, Beynnon BD (2011) Effect of muscle loads and torque applied to the tibia on the strain behavior of the anterior cruciate ligament: an in vitro investigation. Clin Biomech (Bristol, Avon) 26(10):1005–1011. CrossRefGoogle Scholar
  110. 110.
    Heijne A, Fleming BC, Renstrom PA, Peura GD, Beynnon BD, Werner S (2004) Strain on the anterior cruciate ligament during closed kinetic chain exercises. Med Sci Sports Exerc 36(6):935–941CrossRefPubMedGoogle Scholar
  111. 111.
    Luque-Seron JA, Medina-Porqueres I (2016) Anterior cruciate ligament strain in vivo: a systematic review. Sports Health 8(5):451–455. CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Beynnon BD, Johnson RJ, Fleming BC, Stankewich CJ, Renstrom PA, Nichols CE (1997) The strain behavior of the anterior cruciate ligament during squatting and active flexion-extension. A comparison of an open and a closed kinetic chain exercise. Am J Sports Med 25(6):823–829CrossRefPubMedGoogle Scholar
  113. 113.
    Fleming BC, Beynnon BD (2004) In vivo measurement of ligament/tendon strains and forces: a review. Ann Biomed Eng 32(3):318–328CrossRefPubMedGoogle Scholar
  114. 114.
    Fleming BC, Beynnon BD, Renstrom PA, Peura GD, Nichols CE, Johnson RJ (1998) The strain behavior of the anterior cruciate ligament during bicycling. An in vivo study. Am J Sports Med 26(1):109–118CrossRefPubMedGoogle Scholar
  115. 115.
    Fleming BC, Ohlen G, Renstrom PA, Peura GD, Beynnon BD, Badger GJ (2003) The effects of compressive load and knee joint torque on peak anterior cruciate ligament strains. Am J Sports Med 31(5):701–707CrossRefPubMedGoogle Scholar
  116. 116.
    Fleming BC, Oksendahl H, Beynnon BD (2005) Open- or closed-kinetic chain exercises after anterior cruciate ligament reconstruction? Exerc Sport Sci Rev 33(3):134–140CrossRefPubMedGoogle Scholar
  117. 117.
    Witvrouw E, Sneyers C, Lysens R, Victor J, Bellemans J (1996) Reflex response times of vastus medialis oblique and vastus lateralis in normal subjects and in subjects with patellofemoral pain syndrome. J Orthop Sports Phys Ther 24(3):160–165. CrossRefPubMedGoogle Scholar
  118. 118.
    Witvrouw E, Lysens R, Bellemans J, Peers K, Vanderstraeten G (2000) Open versus closed kinetic chain exercises for patellofemoral pain. A prospective, randomized study. Am J Sports Med 28(5):687–694CrossRefPubMedGoogle Scholar
  119. 119.
    Witvrouw E, Danneels L, Van Tiggelen D, Willems TM, Cambier D (2004) Open versus closed kinetic chain exercises in patellofemoral pain: a 5-year prospective randomized study. Am J Sports Med 32(5):1122–1130. CrossRefPubMedGoogle Scholar
  120. 120.
    Kline PW, Johnson DL, Ireland ML, Noehren B (2016) Clinical predictors of knee mechanics at return to sport after ACL reconstruction. Med Sci Sports Exerc 48(5):790–795. CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Kyritsis P, Bahr R, Landreau P, Miladi R, Witvrouw E (2016) Likelihood of ACL graft rupture: not meeting six clinical discharge criteria before return to sport is associated with a four times greater risk of rupture. Br J Sports Med 50:946–951. CrossRefPubMedGoogle Scholar
  122. 122.
    Larsen JB, Farup J, Lind M, Dalgas U (2015) Muscle strength and functional performance is markedly impaired at the recommended time point for sport return after anterior cruciate ligament reconstruction in recreational athletes. Hum Mov Sci 39:73–87. CrossRefPubMedGoogle Scholar
  123. 123.
    Narducci E, Waltz A, Gorski K, Leppla L, Donaldson M (2011) The clinical utility of functional performance tests within one-year post-acl reconstruction: a systematic review. Int J Sports Phys Ther 6(4):333–342PubMedPubMedCentralGoogle Scholar
  124. 124.
    Rodriguez-Roiz JM, Caballero M, Ares O, Sastre S, Lozano L, Popescu D (2015) Return to recreational sports activity after anterior cruciate ligament reconstruction: a one- to six-year follow-up study. Arch Orthop Trauma Surg 135(8):1117–1122. CrossRefPubMedGoogle Scholar
  125. 125.
    Shrier I (2015) Strategic assessment of risk and risk tolerance (StARRT) framework for return-to-play decision-making. Br J Sports Med 49(20):1311–1315. CrossRefPubMedGoogle Scholar
  126. 126.
    White K, Di Stasi SL, Smith AH, Snyder-Mackler L (2013) Anterior cruciate ligament- specialized post-operative return-to-sports (ACL-SPORTS) training: a randomized control trial. BMC Musculoskelet Disord 14:108. CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Hewett TE, Myer GD, Ford KR, Paterno MV, Quatman CE (2016) Mechanisms, prediction, and prevention of ACL injuries: cut risk with three sharpened and validated tools. J Orthop Res 34(11):1843–1855. CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Paterno MV (2015) Incidence and predictors of second anterior cruciate ligament injury after primary reconstruction and return to sport. J Athl Train 50(10):1097–1099. CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Paterno MV, Schmitt LC, Ford KR, Rauh MJ, Myer GD, Huang B, Hewett TE (2010) Biomechanical measures during landing and postural stability predict second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport. Am J Sports Med 38(10):1968–1978. CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Paterno MV, Rauh MJ, Schmitt LC, Ford KR, Hewett TE (2014) Incidence of second ACL injuries 2 years after primary ACL reconstruction and return to sport. Am J Sports Med 42(7):1567–1573. CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Paterno MV, Kiefer AW, Bonnette S, Riley MA, Schmitt LC, Ford KR, Myer GD, Shockley K, Hewett TE (2015) Prospectively identified deficits in sagittal plane hip-ankle coordination in female athletes who sustain a second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport. Clin Biomech (Bristol, Avon) 30(10):1094–1101. CrossRefGoogle Scholar
  132. 132.
    Barber-Westin SD, Noyes FR (2011) Objective criteria for return to athletics after anterior cruciate ligament reconstruction and subsequent reinjury rates: a systematic review. Phys Sportsmed 39(3):100–110. CrossRefPubMedGoogle Scholar
  133. 133.
    Cvjetkovic DD, Bijeljac S, Palija S, Talic G, Radulovic TN, Kosanovic MG, Manojlovic S (2015) Isokinetic testing in evaluation rehabilitation outcome after ACL reconstruction. Med Arch 69(1):21–23. CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Duncan KJ, Chopp-Hurley JN, Maly MR (2016) A systematic review to evaluate exercise for anterior cruciate ligament injuries: does this approach reduce the incidence of knee osteoarthritis? Open Access Rheumatol 8:1–16. CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Jacopetti M, Pasquini A, Costantino C (2016) Evaluation of strength muscle recovery with isokinetic, squat jump and stiffness tests in athletes with ACL reconstruction: a case control study. Acta Biomed 87(1):76–80PubMedGoogle Scholar
  136. 136.
    Labanca L, Laudani L, Menotti F, Rocchi J, Mariani PP, Giombini A, Pigozzi F, Macaluso A (2016) Asymmetrical lower extremity loading early after anterior cruciate ligament reconstruction is a significant predictor of asymmetrical loading at the time of return to sport. Am J Phys Med Rehabil 95(4):248–255. CrossRefPubMedGoogle Scholar
  137. 137.
    Shaarani SR, O’Hare C, Quinn A, Moyna N, Moran R, O'Byrne JM (2013) Effect of prehabilitation on the outcome of anterior cruciate ligament reconstruction. Am J Sports Med 41(9):2117–2127. CrossRefPubMedGoogle Scholar
  138. 138.
    Ucay O, Renault A, Gleizes Cervera S, Gasq D (2016) How to evaluate precisely return to sport after anterior cruciate ligament tear with operative or conservative treatment on patients with moderate sport level? Ann Phys Rehabil Med 59S:e19. CrossRefGoogle Scholar
  139. 139.
    Undheim MB, Cosgrave C, King E, Strike S, Marshall B, Falvey E, Franklyn-Miller A (2015) Isokinetic muscle strength and readiness to return to sport following anterior cruciate ligament reconstruction: is there an association? A systematic review and a protocol recommendation. Br J Sports Med 49(20):1305–1310. CrossRefPubMedGoogle Scholar
  140. 140.
    Davies GJ, Zillmer DA (2000) Functional progression of a patient through a rehabilitation program. Ortho Phys Ther Clin North Am 9:103–118Google Scholar
  141. 141.
    Davies GJ, Clark MA, Hedierscheit BC (2000) Functional progression of exercise during rehabilitation. In: Ellenbecker TS (ed) Knee ligament rehabilitation. Churchill-Livingstone, New York, pp 345–360Google Scholar
  142. 142.
    Jang SH, Kim JG, Ha JK, Wang BG, Yang SJ (2014) Functional performance tests as indicators of returning to sports after anterior cruciate ligament reconstruction. Knee 21(1):95–101. CrossRefPubMedGoogle Scholar
  143. 143.
    Augustsson J, Thomee R, Linden C, Folkesson M, Tranberg R, Karlsson J (2006) Single-leg hop testing following fatiguing exercise: reliability and biomechanical analysis. Scand J Med Sci Sports 16(2):111–120. CrossRefPubMedGoogle Scholar
  144. 144.
    Barber-Westin SD, Noyes FR (2017) Effect of fatigue protocols on lower limb neuromuscular function and implications for ACL injury prevention training: a systematic review. Am J Sports Med 45:3388–3396. CrossRefPubMedGoogle Scholar
  145. 145.
    DeNuccio DK, Davies GJ, Rowinski MJ (1991) Comparison of quadriceps isokinetic eccentric and concentric data using a standard fatigue protocol. Isok Exerc Sci 1(2):81–86Google Scholar
  146. 146.
    Creighton DW, Shrier I, Shultz R, Meeuwisse WH, Matheson GO (2010) Return-to-play in sport: a decision-based model. Clin J Sport Med 20(5):379–385. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • George J. Davies
    • 1
    Email author
  • Bryan Riemann
    • 2
  • Todd Ellenbecker
    • 3
  1. 1.Department of Rehabilitation Sciences, Doctor of Physical Therapy ProgramBiodynamics and Human performance Center, Georgia Southern University-Armstrong CampusSavannahUSA
  2. 2.Health Sciences, Biodynamics and Human Performance CenterArmstrong Campus, Georgia Southern UniversitySavannahUSA
  3. 3.Associates Scottsdale Sports ClinicScottsdaleUSA

Personalised recommendations