Advertisement

Testing for Neuromuscular Problems and Athletic Performance

  • Sue Barber-Westin
  • Frank R. Noyes
Chapter

Abstract

This chapter reviews cost-effective tests to determine neuromuscular deficiencies and indicators of athletic performance. The identification of athletes who may have an increased risk of sustaining a noncontact ACL rupture is highly important in the continued development of knee injury prevention programs. No single test has been found to be highly predictive of at-risk athletes. Common body mechanics and injury circumstances have been noted during or just following ACL ruptures, such as reduced knee flexion angles, increased hip flexion angles, valgus collapse at the knee, reduced ankle plantar flexion angles (flat-footed position), increased hip internal rotation, and increased internal or external tibial rotation. Cost-effective tests are recommended that depict these abnormal mechanics during activities such as landing from a jump, cutting, or sidestepping. Field tests are described that are commonly used to estimate maximal oxygen uptake and measure speed, agility, vertical jump height, dynamic balance, and strength before and after ACL intervention training. Other testing options that require sophisticated equipment (such as magnetic resonance imaging) are presented for anatomical indices (intercondylar notch, tibial slope) that appear to play a role in ACL injury risk. The potential importance of performance scores on neurocognitive (concussion) tests is discussed.

Keywords

Neuromuscular testing Drop jump Function tests Field tests Performance tests 

References

  1. 1.
    Vacek PM, Slauterbeck JR, Tourville TW, Sturnick DR, Holterman LA, Smith HC, Shultz SJ, Johnson RJ, Tourville KJ, Beynnon BD (2016) Multivariate analysis of the risk factors for first-time noncontact ACL injury in high school and college athletes: a prospective cohort study with a nested, matched case-control analysis. Am J Sports Med 44(6):1492–1501.  https://doi.org/10.1177/0363546516634682 CrossRefPubMedGoogle Scholar
  2. 2.
    Leppanen M, Pasanen K, Kujala UM, Vasankari T, Kannus P, Ayramo S, Krosshaug T, Bahr R, Avela J, Perttunen J, Parkkari J (2017) Stiff landings are associated with increased ACL injury risk in young female basketball and floorball players. Am J Sports Med 45(2):386–393.  https://doi.org/10.1177/0363546516665810 CrossRefPubMedGoogle Scholar
  3. 3.
    O’Kane JW, Tencer A, Neradilek M, Polissar N, Sabado L, Schiff MA (2016) Is knee separation during a drop jump associated with lower extremity injury in adolescent female soccer players? Am J Sports Med 44(2):318–323.  https://doi.org/10.1177/0363546515613076 CrossRefPubMedGoogle Scholar
  4. 4.
    Smith HC, Johnson RJ, Shultz SJ, Tourville T, Holterman LA, Slauterbeck J, Vacek PM, Beynnon BD (2012) A prospective evaluation of the Landing Error Scoring System (LESS) as a screening tool for anterior cruciate ligament injury risk. Am J Sports Med 40(3):521–526.  https://doi.org/10.1177/0363546511429776 CrossRefPubMedGoogle Scholar
  5. 5.
    Boden BP, Torg JS, Knowles SB, Hewett TE (2009) Video analysis of anterior cruciate ligament injury: abnormalities in hip and ankle kinematics. Am J Sports Med 37(2):252–259.  https://doi.org/10.1177/0363546508328107 CrossRefPubMedGoogle Scholar
  6. 6.
    Krosshaug T, Nakamae A, Boden BP, Engebretsen L, Smith G, Slauterbeck JR, Hewett TE, Bahr R (2007) Mechanisms of anterior cruciate ligament injury in basketball: video analysis of 39 cases. Am J Sports Med 35(3):359–367CrossRefPubMedGoogle Scholar
  7. 7.
    Sheehan FT, Sipprell WH 3rd, Boden BP (2012) Dynamic sagittal plane trunk control during anterior cruciate ligament injury. Am J Sports Med 40(5):1068–1074.  https://doi.org/10.1177/0363546512437850 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Noyes FR, Barber-Westin SD, Fleckenstein C, Walsh C, West J (2005) The drop-jump screening test: difference in lower limb control by gender and effect of neuromuscular training in female athletes. Am J Sports Med 33(2):197–207CrossRefPubMedGoogle Scholar
  9. 9.
    Redler LH, Watling JP, Dennis ER, Swart E, Ahmad CS (2016) Reliability of a field-based drop vertical jump screening test for ACL injury risk assessment. Phys Sportsmed 44(1):46–52.  https://doi.org/10.1080/00913847.2016.1131107 CrossRefPubMedGoogle Scholar
  10. 10.
    Sigward SM, Havens KL, Powers CM (2011) Knee separation distance and lower extremity kinematics during a drop land: implications for clinical screening. J Athl Train 46(5):471–475CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Huston LJ, Vibert B, Ashton-Miller JA, Wojtys EM (2001) Gender differences in knee angle when landing from a drop-jump. Am J Knee Surg 14(4):215–219PubMedGoogle Scholar
  12. 12.
    Chaudhari AM, Hearn BK, Leveille LA, Johnson ER, Andriacchi TP (2003) The effects of dynamic limb alignment on knee moments during single limb landing: implications for the analysis of the non-contact injury to the anterior cruciate ligament. In: 2003 summer bioengineering conference, Key Biscayne, FL, June 25–29, 2003Google Scholar
  13. 13.
    Khuu S, Musalem LL, Beach TA (2015) Verbal instructions acutely affect drop vertical jump biomechanics—implications for athletic performance and injury risk assessments. J Strength Cond Res 29(10):2816–2826.  https://doi.org/10.1519/JSC.0000000000000938 CrossRefPubMedGoogle Scholar
  14. 14.
    Engelen-van Melick N, van Cingel RE, Tijssen MP, Nijhuis-van der Sanden MW (2013) Assessment of functional performance after anterior cruciate ligament reconstruction: a systematic review of measurement procedures. Knee Surg Sports Traumatol Arthrosc 21(4):869–879.  https://doi.org/10.1007/s00167-012-2030-6 CrossRefPubMedGoogle Scholar
  15. 15.
    Hegedus EJ, McDonough SM, Bleakley C, Baxter D, Cook CE (2015) Clinician-friendly lower extremity physical performance tests in athletes: a systematic review of measurement properties and correlation with injury. Part 2-the tests for the hip, thigh, foot and ankle including the star excursion balance test. Br J Sports Med 49(10):649–656.  https://doi.org/10.1136/bjsports-2014-094341 CrossRefPubMedGoogle Scholar
  16. 16.
    Kroman SL, Roos EM, Bennell KL, Hinman RS, Dobson F (2014) Measurement properties of performance-based outcome measures to assess physical function in young and middle-aged people known to be at high risk of hip and/or knee osteoarthritis: a systematic review. Osteoarthr Cartil 22(1):26–39.  https://doi.org/10.1016/j.joca.2013.10.021 CrossRefPubMedGoogle Scholar
  17. 17.
    Logerstedt D, Grindem H, Lynch A, Eitzen I, Engebretsen L, Risberg MA, Axe MJ, Snyder-Mackler L (2012) Single-legged hop tests as predictors of self-reported knee function after anterior cruciate ligament reconstruction: the Delaware-Oslo ACL cohort study. Am J Sports Med 40(10):2348–2356.  https://doi.org/10.1177/0363546512457551 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Meierbachtol A, Rohman E, Paur E, Bottoms J, Tompkins M (2016) Quantitative improvements in hop test scores after a 6-week neuromuscular training program. Sports Health 9:22.  https://doi.org/10.1177/1941738116667933 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Noyes FR, Barber SD, Mangine RE (1991) Abnormal lower limb symmetry determined by function hop tests after anterior cruciate ligament rupture. Am J Sports Med 19(5):513–518CrossRefPubMedGoogle Scholar
  20. 20.
    Barber SD, Noyes FR, Mangine RE, McCloskey JW, Hartman W (1990) Quantitative assessment of functional limitations in normal and anterior cruciate ligament-deficient knees. Clin Orthop Relat Res 255:204–214Google Scholar
  21. 21.
    Reid A, Birmingham TB, Stratford PW, Alcock GK, Giffin JR (2007) Hop testing provides a reliable and valid outcome measure during rehabilitation after anterior cruciate ligament reconstruction. Phys Ther 87(3):337–349CrossRefPubMedGoogle Scholar
  22. 22.
    Gustavsson A, Neeter C, Thomee P, Silbernagel KG, Augustsson J, Thomee R, Karlsson J (2006) A test battery for evaluating hop performance in patients with an ACL injury and patients who have undergone ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 14(8):778–788.  https://doi.org/10.1007/s00167-006-0045-6 CrossRefPubMedGoogle Scholar
  23. 23.
    Greenberger HB, Paterno MV (1995) Relationship of knee extensor strength and hopping test performance in the assessment of lower extremity function. J Orthop Sports Phys Ther 22(5):202–206CrossRefPubMedGoogle Scholar
  24. 24.
    Wilk KE, Romaniello WT, Soscia SM, Arrigo CA, Andrews JR (1994) The relationship between subjective knee scores, isokinetic testing, and functional testing in the ACL-reconstructed knee. J Orthop Sports Phys Ther 20(2):60–73CrossRefPubMedGoogle Scholar
  25. 25.
    Xergia SA, Pappas E, Georgoulis AD (2014) Association of the single-limb hop test with isokinetic, kinematic, and kinetic asymmetries in patients after anterior cruciate ligament reconstruction. Sports Health 7(3):217–223.  https://doi.org/10.1177/1941738114529532 CrossRefGoogle Scholar
  26. 26.
    Hamilton RT, Shultz SJ, Schmitz RJ, Perrin DH (2008) Triple-hop distance as a valid predictor of lower limb strength and power. J Athl Train 43(2):144–151CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Ross MD, Langford B, Whelan PJ (2002) Test-retest reliability of 4 single-leg horizontal hop tests. J Strength Cond Res 16(4):617–622PubMedGoogle Scholar
  28. 28.
    Mansour JM, Pereira JM (1987) Quantitative functional anatomy of the lower limb with application to human gait. J Biomech 20(1):51–58CrossRefPubMedGoogle Scholar
  29. 29.
    Ageberg E, Bennell KL, Hunt MA, Simic M, Roos EM, Creaby MW (2010) Validity and inter-rater reliability of medio-lateral knee motion observed during a single-limb mini squat. BMC Musculoskelet Disord 11:265.  https://doi.org/10.1186/1471-2474-11-265 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Alenezi F, Herrington L, Jones P, Jones R (2014) The reliability of biomechanical variables collected during single leg squat and landing tasks. J Electromyogr Kinesiol 24(5):718–721.  https://doi.org/10.1016/j.jelekin.2014.07.007 CrossRefPubMedGoogle Scholar
  31. 31.
    Crossley KM, Zhang WJ, Schache AG, Bryant A, Cowan SM (2011) Performance on the single-leg squat task indicates hip abductor muscle function. Am J Sports Med 39(4):866–873.  https://doi.org/10.1177/0363546510395456 CrossRefPubMedGoogle Scholar
  32. 32.
    Ugalde V, Brockman C, Bailowitz Z, Pollard CD (2015) Single leg squat test and its relationship to dynamic knee valgus and injury risk screening. PM R 7(3):229–235.; quiz 235.  https://doi.org/10.1016/j.pmrj.2014.08.361 CrossRefPubMedGoogle Scholar
  33. 33.
    Zeller BL, McCrory JL, Kibler WB, Uhl TL (2003) Differences in kinematics and electromyographic activity between men and women during the single-legged squat. Am J Sports Med 31(3):449–456CrossRefPubMedGoogle Scholar
  34. 34.
    Baldon Rde M, Lobato DF, Carvalho LP, Santiago PR, Benze BG, Serrao FV (2011) Relationship between eccentric hip torque and lower-limb kinematics: gender differences. J Appl Biomech 27(3):223–232CrossRefPubMedGoogle Scholar
  35. 35.
    Willson JD, Ireland ML, Davis I (2006) Core strength and lower extremity alignment during single leg squats. Med Sci Sports Exerc 38(5):945–952CrossRefPubMedGoogle Scholar
  36. 36.
    Claiborne TL, Armstrong CW, Gandhi V, Pincivero DM (2006) Relationship between hip and knee strength and knee valgus during a single leg squat. J Appl Biomech 22(1):41–50CrossRefPubMedGoogle Scholar
  37. 37.
    Stickler L, Finley M, Gulgin H (2015) Relationship between hip and core strength and frontal plane alignment during a single leg squat. Phys Ther Sport 16(1):66–71.  https://doi.org/10.1016/j.ptsp.2014.05.002 CrossRefPubMedGoogle Scholar
  38. 38.
    Bird SP, Markwick WJ (2016) Musculoskeletal screening and functional testing: considerations for basketball athletes. Int J Sports Phys Ther 11(5):784–802PubMedPubMedCentralGoogle Scholar
  39. 39.
    Chimera NJ, Warren M (2016) Use of clinical movement screening tests to predict injury in sport. World J Orthop 7(4):202–217.  https://doi.org/10.5312/wjo.v7.i4.202 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Filipa A, Byrnes R, Paterno MV, Myer GD, Hewett TE (2010) Neuromuscular training improves performance on the star excursion balance test in young female athletes. J Orthop Sports Phys Ther 40(9):551–558.  https://doi.org/10.2519/jospt.2010.3325 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Hopper A, Haff EE, Barley O, Joyce C, Lloyd RS, Haff GG (2017) Neuromuscular training improves movement competency and physical performance measures in 11–13 year old female netball athletes. J Strength Cond Res 31:1165–1176.  https://doi.org/10.1519/JSC.0000000000001794 CrossRefPubMedGoogle Scholar
  42. 42.
    McCann RS, Kosik KB, Terada M, Beard MQ, Buskirk GE, Gribble PA (2016) Associations between functional and isolated performance measures in collegiate Women’s soccer players. J Sport Rehabil 26:1–29.  https://doi.org/10.1123/jsr.2016-0016 CrossRefGoogle Scholar
  43. 43.
    Munro AG, Herrington LC (2010) Between-session reliability of the star excursion balance test. Phys Ther Sport 11(4):128–132.  https://doi.org/10.1016/j.ptsp.2010.07.002 CrossRefPubMedGoogle Scholar
  44. 44.
    Paz GA, Gabbett TJ, Maia MF, Santana H, Miranda H, Lima V (2017) Physical performance and positional differences among young female volleyball players. J Sports Med Phys Fitness 57:1282–1289PubMedGoogle Scholar
  45. 45.
    Sabin MJ, Ebersole KT, Martindale AR, Price JW, Broglio SP (2010) Balance performance in male and female collegiate basketball athletes: influence of testing surface. J Strength Cond Res 24(8):2073–2078.  https://doi.org/10.1519/JSC.0b013e3181ddae13 CrossRefPubMedGoogle Scholar
  46. 46.
    Steffen K, Nilstad A, Krosshaug T, Pasanen K, Killingmo A, Bahr R (2017) No association between static and dynamic postural control and ACL injury risk among female elite handball and football players: a prospective study of 838 players. Br J Sports Med 51(4):253–259.  https://doi.org/10.1136/bjsports-2016-097068 CrossRefPubMedGoogle Scholar
  47. 47.
    Stiffler MR, Sanfilippo JL, Brooks MA, Heiderscheit BC (2015) Star excursion balance test performance varies by sport in healthy division I collegiate athletes. J Orthop Sports Phys Ther 45(10):772–780.  https://doi.org/10.2519/jospt.2015.5777 CrossRefPubMedGoogle Scholar
  48. 48.
    McLeod TC, Armstrong T, Miller M, Sauers JL (2009) Balance improvements in female high school basketball players after a 6-week neuromuscular-training program. J Sport Rehabil 18(4):465–481CrossRefPubMedGoogle Scholar
  49. 49.
    Pfile KR, Gribble PA, Buskirk GE, Meserth SM, Pietrosimone BG (2016) Sustained improvements in dynamic balance and landing mechanics after a 6-week neuromuscular training program in college Women’s basketball players. J Sport Rehabil 25(3):233–240.  https://doi.org/10.1123/jsr.2014-0323 CrossRefPubMedGoogle Scholar
  50. 50.
    Steib S, Zahn P, Zu Eulenburg C, Pfeifer K, Zech A (2016) Time-dependent postural control adaptations following a neuromuscular warm-up in female handball players: a randomized controlled trial. BMC Sports Sci Med Rehabil 8:33.  https://doi.org/10.1186/s13102-016-0058-5 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Kalichman L, Lachman H, Freilich N (2016) Long-term impact of ankle sprains on postural control and fascial densification. J Bodyw Mov Ther 20(4):914–919.  https://doi.org/10.1016/j.jbmt.2016.04.002 CrossRefPubMedGoogle Scholar
  52. 52.
    Kosik KB, Gribble PA (2018) The effect of joint mobilization on dynamic postural control in patients with chronic ankle instability: a critically appraised topic. J Sport Rehabil 27:103–108.  https://doi.org/10.1123/jsr.2016-0074 CrossRefPubMedGoogle Scholar
  53. 53.
    Kwon YU, Blaise Williams DS 3rd (2017) The effect of variable rest intervals and chronic ankle instability on triplanar ankle motion during performance of the Star Excursion Balance Test. Hum Mov Sci 52:143–150.  https://doi.org/10.1016/j.humov.2017.01.013 CrossRefPubMedGoogle Scholar
  54. 54.
    Wright CJ, Linens SW, Cain MS (2016) A randomized controlled trial comparing rehabilitation efficacy in chronic ankle instability. J Sport Rehabil 26:1–32.  https://doi.org/10.1123/jsr.2015-0189 CrossRefGoogle Scholar
  55. 55.
    Hooper TL, James CR, Brismee JM, Rogers TJ, Gilbert KK, Browne KL, Sizer PS (2016) Dynamic balance as measured by the Y-Balance Test is reduced in individuals with low back pain: a cross-sectional comparative study. Phys Ther Sport 22:29–34.  https://doi.org/10.1016/j.ptsp.2016.04.006 CrossRefPubMedGoogle Scholar
  56. 56.
    Ganesh GS, Chhabra D, Pattnaik M, Mohanty P, Patel R, Mrityunjay K (2015) Effect of trunk muscles training using a star excursion balance test grid on strength, endurance and disability in persons with chronic low back pain. J Back Musculoskelet Rehabil 28(3):521–530.  https://doi.org/10.3233/BMR-140551 CrossRefPubMedGoogle Scholar
  57. 57.
    Tsigkanos C, Gaskell L, Smirniotou A, Tsigkanos G (2016) Static and dynamic balance deficiencies in chronic low back pain. J Back Musculoskelet Rehabil 29(4):887–893.  https://doi.org/10.3233/BMR-160721 CrossRefPubMedGoogle Scholar
  58. 58.
    Dobija L, Coudeyre E, Pereira B (2016) Measurement properties of the Star Excursion Balance Test in the anterior crucial ligament-deficient subjects - preliminary analysis. Ann Phys Rehabil Med 59S:e18.  https://doi.org/10.1016/j.rehab.2016.07.043 CrossRefGoogle Scholar
  59. 59.
    Harput G, Howard JS, Mattacola C (2016) Comparison of muscle activation levels between healthy individuals and persons who have undergone anterior cruciate ligament reconstruction during different phases of weight-bearing exercises. J Orthop Sports Phys Ther 46(11):984–992.  https://doi.org/10.2519/jospt.2016.5896 CrossRefPubMedGoogle Scholar
  60. 60.
    Herrington L, Hatcher J, Hatcher A, McNicholas M (2009) A comparison of star excursion balance test reach distances between ACL deficient patients and asymptomatic controls. Knee 16(2):149–152.  https://doi.org/10.1016/j.knee.2008.10.004 CrossRefPubMedGoogle Scholar
  61. 61.
    Zult T, Gokeler A, van Raay JJ, Brouwer RW, Zijdewind I, Hortobagyi T (2017) An anterior cruciate ligament injury does not affect the neuromuscular function of the non-injured leg except for dynamic balance and voluntary quadriceps activation. Knee Surg Sports Traumatol Arthrosc 25(1):172–183.  https://doi.org/10.1007/s00167-016-4335-3 CrossRefPubMedGoogle Scholar
  62. 62.
    Olmsted LC, Carcia CR, Hertel J, Shultz SJ (2002) Efficacy of the star excursion balance tests in detecting reach deficits in subjects with chronic ankle instability. J Athl Train 37(4):501–506PubMedPubMedCentralGoogle Scholar
  63. 63.
    Plisky PJ, Rauh MJ, Kaminski TW, Underwood FB (2006) Star Excursion Balance Test as a predictor of lower extremity injury in high school basketball players. J Orthop Sports Phys Ther 36(12):911–919CrossRefPubMedGoogle Scholar
  64. 64.
    Kinzey SJ, Armstrong CW (1998) The reliability of the star-excursion test in assessing dynamic balance. J Orthop Sports Phys Ther 27(5):356–360CrossRefPubMedGoogle Scholar
  65. 65.
    Gribble PA, Kelly SE, Refshauge KM, Hiller CE (2013) Interrater reliability of the star excursion balance test. J Athl Train 48(5):621–626.  https://doi.org/10.4085/1062-6050-48.3.03 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Hertel J, Miller SJ, Denegar CR (2000) Intratester and intertester reliability during the Star Excurision Balance Tests. J Sport Rehabil 9:104–116CrossRefGoogle Scholar
  67. 67.
    Ambegaonkar JP, Mettinger LM, Caswell SV, Burtt A, Cortes N (2014) Relationships between core endurance, hip strength, and balance in collegiate female athletes. Int J Sports Phys Ther 9(5):604–616PubMedPubMedCentralGoogle Scholar
  68. 68.
    Alnahdi AH, Alderaa AA, Aldali AZ, Alsobayel H (2015) Reference values for the Y Balance Test and the lower extremity functional scale in young healthy adults. J Phys Ther Sci 27 (12):3917–3921. doi:10.1589/jpts.27.3917Google Scholar
  69. 69.
    van Lieshout R, Reijneveld EA, van den Berg SM, Haerkens GM, Koenders NH, de Leeuw AJ, van Oorsouw RG, Paap D, Scheffer E, Weterings S, Stukstette MJ (2016) Reproducibility of the modified star excursion balance test composite and specific reach direction scores. Int J Sports Phys Ther 11(3):356–365PubMedPubMedCentralGoogle Scholar
  70. 70.
    Gribble PA, Hertel J (2003) Considerations for normalising measures of the star excursion balance test. Meas Phys Educ Exerc Sci 7(2):89–100CrossRefGoogle Scholar
  71. 71.
    Dwyer G, Davis SE (2013) ACSM’s health-related physical fitness assessment manual, 4th edn. Lippincott Williams & Wilkins, IndianapolisGoogle Scholar
  72. 72.
    Currell K, Jeukendrup AE (2008) Validity, reliability and sensitivity of measures of sporting performance. Sports Med 38(4):297–316CrossRefPubMedGoogle Scholar
  73. 73.
    Reiman MP, Manske RC (2009) Functional testing in human performance. Human Kinetics, ChampaignGoogle Scholar
  74. 74.
    Turner A, Walker S, Stembridge M, Coneyworth P, Reed G, Birdsey L, Barter P, Moody J (2011) A testing battery for the assessment of fitness in soccer players. Strength Conditi J 33(5):29–39CrossRefGoogle Scholar
  75. 75.
    Harman EA (2008) Principles of test selection and administration. In: Beachle TR, Earle RW (eds) Essentials of strength training and conditioning, 3rd edn. Human Kinetics, Champaign, pp 238–246Google Scholar
  76. 76.
    Knapik JJ, Sharp MA, Canham-Chervak M, Hauret K, Patton JF, Jones BH (2001) Risk factors for training-related injuries among men and women in basic combat training. Med Sci Sports Exerc 33(6):946–954CrossRefPubMedGoogle Scholar
  77. 77.
    Leger LA, Lambert J (1982) A maximal multistage 20-m shuttle run test to predict VO2 max. Eur J Appl Physiol Occup Physiol 49(1):1–12CrossRefPubMedGoogle Scholar
  78. 78.
    Ramsbottom R, Brewer J, Williams C (1988) A progressive shuttle run test to estimate maximal oxygen uptake. Br J Sports Med 22(4):141–144CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Franklin BA, Whaley MH, Howley ET (2009) ACSM’s guidelines for exercise testing and prescription, 6th edn. Lippincott Williams & Wilkins, BaltimoreGoogle Scholar
  80. 80.
    Noyes FR, Barber-Westin SD, Smith ST, Campbell T, Garrison TT (2012) A training program to improve neuromuscular and performance indices in female high school basketball players. J Strength Cond Res 26(3):709–719.  https://doi.org/10.1519/JSC.0b013e318228194c CrossRefPubMedGoogle Scholar
  81. 81.
    Ben Abdelkrim N, Castagna C, Jabri I, Battikh T, El Fazaa S, El Ati J (2010) Activity profile and physiological requirements of junior elite basketball players in relation to aerobic-anaerobic fitness. J Strength Cond Res 24(9):2330–2342.  https://doi.org/10.1519/JSC.0b013e3181e381c1 CrossRefPubMedGoogle Scholar
  82. 82.
    Noyes FR, Barber-Westin SD, Tutalo Smith ST, Campbell T (2013) A training program to improve neuromuscular and performance indices in female high school soccer players. J Strength Cond Res 27(2):340–351.  https://doi.org/10.1519/JSC.0b013e31825423d9 CrossRefPubMedGoogle Scholar
  83. 83.
    Meckel Y, Machnai O, Eliakim A (2009) Relationship among repeated sprint tests, aerobic fitness, and anaerobic fitness in elite adolescent soccer players. J Strength Cond Res 23(1):163–169.  https://doi.org/10.1519/JSC.0b013e31818b9651 CrossRefPubMedGoogle Scholar
  84. 84.
    Nassis GP, Geladas ND, Soldatos Y, Sotiropoulos A, Bekris V, Souglis A (2010) Relationship between the 20-m multistage shuttle run test and 2 soccer-specific field tests for the assessment of aerobic fitness in adult semi-professional soccer players. J Strength Cond Res 24(10):2693–2697.  https://doi.org/10.1519/JSC.0b013e3181bf0471 CrossRefPubMedGoogle Scholar
  85. 85.
    Caldwell BP, Peters DM (2009) Seasonal variation in physiological fitness of a semiprofessional soccer team. J Strength Cond Res 23(5):1370–1377.  https://doi.org/10.1519/JSC.0b013e3181a4e82f CrossRefPubMedGoogle Scholar
  86. 86.
    Hill-Haas SV, Coutts AJ, Rowsell GJ, Dawson BT (2009) Generic versus small-sided game training in soccer. Int J Sports Med 30(9):636–642.  https://doi.org/10.1055/s-0029-1220730 CrossRefPubMedGoogle Scholar
  87. 87.
    Aziz AR, Chia MY, Teh KC (2005) Measured maximal oxygen uptake in a multi-stage shuttle test and treadmill-run test in trained athletes. J Sports Med Phys Fitness 45(3):306–314PubMedGoogle Scholar
  88. 88.
    Gabbett TJ, Carius J, Mulvey M (2008) Does improved decision-making ability reduce the physiological demands of game-based activities in field sport athletes? J Strength Cond Res 22(6):2027–2035.  https://doi.org/10.1519/JSC.0b013e3181887f34 CrossRefPubMedGoogle Scholar
  89. 89.
    Guy JH, Edwards AM, Deakin GB (2014) Inspiratory muscle training improves exercise tolerance in recreational soccer players without concomitant gain in soccer-specific fitness. J Strength Cond Res 28(2):483–491.  https://doi.org/10.1519/JSC.0b013e31829d24b0 CrossRefPubMedGoogle Scholar
  90. 90.
    Noyes FR, Barber-Westin SD, Smith ST, Campbell T (2011) A training program to improve neuromuscular indices in female high school volleyball players. J Strength Cond Res 25(8):2151–2160.  https://doi.org/10.1519/JSC.0b013e3181f906ef CrossRefPubMedGoogle Scholar
  91. 91.
    Gabbett TJ (2008) Do skill-based conditioning games offer a specific training stimulus for junior elite volleyball players? J Strength Cond Res 22(2):509–517.  https://doi.org/10.1519/JSC.0b013e3181634550 CrossRefPubMedGoogle Scholar
  92. 92.
    Gabbett T, Georgieff B (2007) Physiological and anthropometric characteristics of Australian junior national, state, and novice volleyball players. J Strength Cond Res 21(3):902–908.  https://doi.org/10.1519/R-20616.1 CrossRefPubMedGoogle Scholar
  93. 93.
    Gabbett T, Georgieff B, Anderson S, Cotton B, Savovic D, Nicholson L (2006) Changes in skill and physical fitness following training in talent-identified volleyball players. J Strength Cond Res 20(1):29–35.  https://doi.org/10.1519/R-16814.1 CrossRefPubMedGoogle Scholar
  94. 94.
    Duncan MJ, Woodfield L, al-Nakeeb Y (2006) Anthropometric and physiological characteristics of junior elite volleyball players. Br J Sports Med 40(7):649–651.  https://doi.org/10.1136/bjsm.2005.021998 CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Gabbett TJ, Wheeler AJ (2015) Predictors of repeated high-intensity-effort ability in rugby league players. Int J Sports Physiol Perform 10(6):718–724.  https://doi.org/10.1123/ijspp.2014-0127 CrossRefPubMedGoogle Scholar
  96. 96.
    Gabbett TJ (2006) Performance changes following a field conditioning program in junior and senior rugby league players. J Strength Cond Res 20(1):215–221.  https://doi.org/10.1519/R-16554.1 CrossRefPubMedGoogle Scholar
  97. 97.
    Gabbett TJ (2007) Physiological and anthropometric characteristics of elite women rugby league players. J Strength Cond Res 21(3):875–881.  https://doi.org/10.1519/R-20466.1 CrossRefPubMedGoogle Scholar
  98. 98.
    Till K, Cobley S, O'Hara J, Chapman C, Cooke C (2013) A longitudinal evaluation of anthropometric and fitness characteristics in junior rugby league players considering playing position and selection level. J Sci Med Sport 16(5):438–443.  https://doi.org/10.1016/j.jsams.2012.09.002 CrossRefPubMedGoogle Scholar
  99. 99.
    Fargeas-Gluck MA, Leger LA (2012) Comparison of two aerobic field tests in young tennis players. J Strength Cond Res 26(11):3036–3042.  https://doi.org/10.1519/JSC.0b013e3182472fc3 CrossRefPubMedGoogle Scholar
  100. 100.
    Brechbuhl C, Girard O, Millet GP, Schmitt L (2016) On the use of a TEST to exhaustion specific to tennis (TEST) with ball hitting by elite players. PLoS One 11(4):e0152389.  https://doi.org/10.1371/journal.pone.0152389 CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Gabbett TJ, Georgieff B (2006) The development of a standardized skill assessment for junior volleyball players. Int J Sports Physiol Perform 1(2):95–107CrossRefPubMedGoogle Scholar
  102. 102.
    Bianco A, Jemni M, Thomas E, Patti A, Paoli A, Roque J, Palma C, Tabacchi G (2015) A systematic review to determine reliability and usefulness of the field-based test batteries for the assessment of physical fitness in adolescents—the ASSO project. Inj J Occup Med Environ Health 28(3):445–478CrossRefGoogle Scholar
  103. 103.
    Williford HN, Scharff-Olson M, Duey WJ, Pugh S, Barksdale JM (1999) Physiological status and prediction of cardiovascular fitness in highly trained youth soccer athletes. J Strength Cond Res 13(1):10–15Google Scholar
  104. 104.
    Gabbett TJ (2005) A comparison of physiological and anthropometric characteristics among playing positions in junior rugby league players. Br J Sports Med 39(9):675–680CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Mayorga-Vega D, Aguilar-Soto P, Viciana J (2015) Criterion-related validity of the 20-m shuttle run test for estimating cardiorespiratory fitness: a meta-analysis. J Sports Sci Med 14:536–547PubMedPubMedCentralGoogle Scholar
  106. 106.
    Aziz AR, Mukherjee S, Chia MY, Teh KC (2007) Relationship between measured maximal oxygen uptake and aerobic endurance performance with running repeated sprint ability in young elite soccer players. J Sports Med Phys Fitness 47(4):401–407PubMedGoogle Scholar
  107. 107.
    Castagna C, Abt G, D'Ottavio S (2005) Competitive-level differences in Yo-Yo intermittent recovery and twelve minute run test performance in soccer referees. J Strength Cond Res 19(4):805–809.  https://doi.org/10.1519/R-14473.1 CrossRefPubMedGoogle Scholar
  108. 108.
    Aziz AR, Tan FHY, Teh KC (2005) A pilot study comparing two field tests with the treadmill run test in soccer players. J Sports Sci Med 4:105–112PubMedPubMedCentralGoogle Scholar
  109. 109.
    Bangsbo J, Iaia FM, Krustrup P (2008) The Yo-Yo intermittent recovery test : a useful tool for evaluation of physical performance in intermittent sports. Sports Med 38(1):37–51CrossRefPubMedGoogle Scholar
  110. 110.
    Bradley PS, Bendiksen M, Dellal A, Mohr M, Wilkie A, Datson N, Orntoft C, Zebis M, Gomez-Diaz A, Bangsbo J, Krustrup P (2014) The application of the Yo-Yo intermittent endurance level 2 test to elite female soccer populations. Scand J Med Sci Sports 24(1):43–54.  https://doi.org/10.1111/j.1600-0838.2012.01483.x CrossRefPubMedGoogle Scholar
  111. 111.
    Castagna C, Impellizzeri FM, Rampinini E, D'Ottavio S, Manzi V (2008) The Yo-Yo intermittent recovery test in basketball players. J Sci Med Sport 11(2):202–208.  https://doi.org/10.1016/j.jsams.2007.02.013 CrossRefPubMedGoogle Scholar
  112. 112.
    Dupont G, Defontaine M, Bosquet L, Blondel N, Moalla W, Berthoin S (2010) Yo-Yo intermittent recovery test versus the Universite de Montreal Track Test: relation with a high-intensity intermittent exercise. J Sci Med Sport 13(1):146–150.  https://doi.org/10.1016/j.jsams.2008.10.007 CrossRefPubMedGoogle Scholar
  113. 113.
    Flatt AA, Esco MR (2016) Evaluating individual training adaptation with smartphone-derived heart rate variability in a collegiate female soccer team. J Strength Cond Res 30(2):378–385.  https://doi.org/10.1519/JSC.0000000000001095 CrossRefPubMedGoogle Scholar
  114. 114.
    Fanchini M, Schena F, Castagna C, Petruolo A, Combi F, McCall A, Impellizzeri M (2015) External responsiveness of the Yo-Yo IR test level 1 in high-level male soccer players. Int J Sports Med 36(9):735–741.  https://doi.org/10.1055/s-0035-1547223 CrossRefPubMedGoogle Scholar
  115. 115.
    Jones B, Emmonds S, Hind K, Nicholson G, Rutherford Z, Till K (2016) Physical qualities of international female rugby league players by playing position. J Strength Cond Res 30(5):1333–1340.  https://doi.org/10.1519/JSC.0000000000001225 CrossRefPubMedGoogle Scholar
  116. 116.
    Klusemann MJ, Pyne DB, Fay TS, Drinkwater EJ (2012) Online video-based resistance training improves the physical capacity of junior basketball athletes. J Strength Cond Res 26(10):2677–2684.  https://doi.org/10.1519/JSC.0b013e318241b021 CrossRefPubMedGoogle Scholar
  117. 117.
    Lockie RG, Jalilvand F, Moreno MR, Orjalo AJ, Risso FG, Nimphius S (2016) Yo-Yo Intermittent Recovery Test Level 2 and its relationship to other typical soccer field tests in female collegiate soccer players. J Strength Cond Res 31:2667–2677.  https://doi.org/10.1519/JSC.0000000000001734 CrossRefGoogle Scholar
  118. 118.
    Makhlouf I, Castagna C, Manzi V, Laurencelle L, Behm DG, Chaouachi A (2016) Effect of sequencing strength and endurance training in young male soccer players. J Strength Cond Res 30(3):841–850.  https://doi.org/10.1519/JSC.0000000000001164 CrossRefPubMedGoogle Scholar
  119. 119.
    Moss SL, McWhannell N, Michalsik LB, Twist C (2015) Anthropometric and physical performance characteristics of top-elite, elite and non-elite youth female team handball players. J Sports Sci 33(17):1780–1789.  https://doi.org/10.1080/02640414.2015.1012099 CrossRefPubMedGoogle Scholar
  120. 120.
    Nicks CR, Morgan DW, Fuller DK, Caputo JL (2009) The influence of respiratory muscle training upon intermittent exercise performance. Int J Sports Med 30(1):16–21.  https://doi.org/10.1055/s-2008-1038794 CrossRefPubMedGoogle Scholar
  121. 121.
    Purkhus E, Krustrup P, Mohr M (2016) High-intensity training improves exercise performance in elite women volleyball players during a competitive season. J Strength Cond Res 30(11):3066–3072.  https://doi.org/10.1519/JSC.0000000000001408 CrossRefPubMedGoogle Scholar
  122. 122.
    Rampinini E, Sassi A, Azzalin A, Castagna C, Menaspa P, Carlomagno D, Impellizzeri FM (2010) Physiological determinants of Yo-Yo intermittent recovery tests in male soccer players. Eur J Appl Physiol 108(2):401–409.  https://doi.org/10.1007/s00421-009-1221-4 CrossRefPubMedGoogle Scholar
  123. 123.
    Serpiello FR, McKenna MJ, Stepto NK, Bishop DJ, Aughey RJ (2011) Performance and physiological responses to repeated-sprint exercise: a novel multiple-set approach. Eur J Appl Physiol 111(4):669–678.  https://doi.org/10.1007/s00421-010-1687-0 CrossRefPubMedGoogle Scholar
  124. 124.
    Sirotic AC, Coutts AJ (2007) Physiological and performance test correlates of prolonged, high-intensity, intermittent running performance in moderately trained women team sport athletes. J Strength Cond Res 21(1):138–144.  https://doi.org/10.1519/R-17745.1 CrossRefPubMedGoogle Scholar
  125. 125.
    Souhail H, Castagna C, Mohamed HY, Younes H, Chamari K (2010) Direct validity of the yo-yo intermittent recovery test in young team handball players. J Strength Cond Res 24(2):465–470.  https://doi.org/10.1519/JSC.0b013e3181c06827 CrossRefPubMedGoogle Scholar
  126. 126.
    Vescovi JD (2016) Locomotor, heart-rate, and metabolic power characteristics of youth Women’s field hockey: Female Athletes in Motion (FAiM) Study. Res Q Exerc Sport 87(1):68–77.  https://doi.org/10.1080/02701367.2015.1124972 CrossRefPubMedGoogle Scholar
  127. 127.
    Castagna C, Impellizzeri F, Cecchini E, Rampinini E, Alvarez JC (2009) Effects of intermittent-endurance fitness on match performance in young male soccer players. J Strength Cond Res 23(7):1954–1959.  https://doi.org/10.1519/JSC.0b013e3181b7f743 CrossRefPubMedGoogle Scholar
  128. 128.
    Chaouachi A, Manzi V, Wong del P, Chaalali A, Laurencelle L, Chamari K, Castagna C (2010) Intermittent endurance and repeated sprint ability in soccer players. J Strength Cond Res 24(10):2663–2669.  https://doi.org/10.1519/JSC.0b013e3181e347f4 CrossRefPubMedGoogle Scholar
  129. 129.
    Thomas A, Dawson B, Goodman C (2006) The yo-yo test: reliability and association with a 20-m shuttle run and VO(2max). Int J Sports Physiol Perform 1(2):137–149CrossRefPubMedGoogle Scholar
  130. 130.
    Veale JP, Pearce AJ, Carlson JS (2010) The Yo-Yo Intermittent Recovery Test (Level 1) to discriminate elite junior Australian football players. J Sci Med Sport 13(3):329–331.  https://doi.org/10.1016/j.jsams.2009.03.006 CrossRefPubMedGoogle Scholar
  131. 131.
    Castagna C, Impellizzeri FM, Chamari K, Carlomagno D, Rampinini E (2006) Aerobic fitness and yo-yo continuous and intermittent tests performances in soccer players: a correlation study. J Strength Cond Res 20(2):320–325.  https://doi.org/10.1519/R-18065.1 CrossRefPubMedGoogle Scholar
  132. 132.
    Hetzler RK, Stickley CD, Lundquist KM, Kimura IF (2008) Reliability and accuracy of handheld stopwatches compared with electronic timing in measuring sprint performance. J Strength Cond Res 22(6):1969–1976.  https://doi.org/10.1519/JSC.0b013e318185f36c CrossRefPubMedGoogle Scholar
  133. 133.
    Delextrat A, Cohen D (2008) Physiological testing of basketball players: toward a standard evaluation of anaerobic fitness. J Strength Cond Res 22(4):1066–1072.  https://doi.org/10.1519/JSC.0b013e3181739d9b CrossRefPubMedGoogle Scholar
  134. 134.
    Delextrat A, Cohen D (2009) Strength, power, speed, and agility of women basketball players according to playing position. J Strength Cond Res 23(7):1974–1981.  https://doi.org/10.1519/JSC.0b013e3181b86a7e CrossRefPubMedGoogle Scholar
  135. 135.
    Gabbett TJ, Sheppard JM, Pritchard-Peschek KR, Leveritt MD, Aldred MJ (2008) Influence of closed skill and open skill warm-ups on the performance of speed, change of direction speed, vertical jump, and reactive agility in team sport athletes. J Strength Cond Res 22(5):1413–1415.  https://doi.org/10.1519/JSC.0b013e3181739ecd CrossRefPubMedGoogle Scholar
  136. 136.
    Delextrat A, Trochym E, Calleja-Gonzalez J (2012) Effect of a typical in-season week on strength jump and sprint performances in national-level female basketball players. J Sports Med Phys Fitness 52(2):128–136PubMedGoogle Scholar
  137. 137.
    Delextrat A, Grosgeorge B, Bieuzen F (2015) Determinants of performance in a new test of planned agility for young elite basketball players. Int J Sports Physiol Perform 10(2):160–165.  https://doi.org/10.1123/ijspp.2014-0097 CrossRefPubMedGoogle Scholar
  138. 138.
    Hoffman JR, Ratamess NA, Neese KL, Ross RE, Kang J, Magrelli JF, Faigenbaum AD (2009) Physical performance characteristics in National Collegiate Athletic Association Division III champion female lacrosse athletes. J Strength Cond Res 23(5):1524–1529.  https://doi.org/10.1519/JSC.0b013e3181b3391d CrossRefPubMedGoogle Scholar
  139. 139.
    de Hoyo M, Gonzalo-Skok O, Sanudo B, Carrascal C, Plaza-Armas JR, Camacho-Candil F, Otero-Esquina C (2016) Comparative effects of in-season full-back squat, resisted sprint training, and plyometric training on explosive performance in U-19 elite soccer players. J Strength Cond Res 30(2):368–377.  https://doi.org/10.1519/JSC.0000000000001094 CrossRefPubMedGoogle Scholar
  140. 140.
    Hammami M, Negra Y, Aouadi R, Shephard RJ, Chelly MS (2016) Effects of an in-season plyometric training program on repeated change of direction and sprint performance in the junior soccer player. J Strength Cond Res 30(12):3312–3320.  https://doi.org/10.1519/JSC.0000000000001470 CrossRefPubMedGoogle Scholar
  141. 141.
    Mirkov D, Nedeljkovic A, Kukolj M, Ugarkovic D, Jaric S (2008) Evaluation of the reliability of soccer-specific field tests. J Strength Cond Res 22(4):1046–1050.  https://doi.org/10.1519/JSC.0b013e31816eb4af CrossRefPubMedGoogle Scholar
  142. 142.
    Vescovi JD, McGuigan MR (2008) Relationships between sprinting, agility, and jump ability in female athletes. J Sports Sci 26(1):97–107.  https://doi.org/10.1080/02640410701348644 CrossRefPubMedGoogle Scholar
  143. 143.
    Trajkovic N, Milanovic Z, Sporis G, Milic V, Stankovic R (2012) The effects of 6 weeks of preseason skill-based conditioning on physical performance in male volleyball players. J Strength Cond Res 26(6):1475–1480.  https://doi.org/10.1519/JSC.0b013e318231a704 CrossRefPubMedGoogle Scholar
  144. 144.
    Darrall-Jones JD, Jones B, Roe G, Till K (2016) Reliability and usefulness of linear Sprint testing in adolescent rugby union and league players. J Strength Cond Res 30(5):1359–1364.  https://doi.org/10.1519/JSC.0000000000001233 CrossRefPubMedGoogle Scholar
  145. 145.
    Dello Iacono A, Martone D, Zagatto AM, Meckel Y, Sindiani M, Milic M, Padulo J (2018) Effect of contact and no-contact small-sided games on elite handball players. J Sports Sci 36:14–22.  https://doi.org/10.1080/02640414.2016.1276296 CrossRefGoogle Scholar
  146. 146.
    Ulbricht A, Fernandez-Fernandez J, Mendez-Villanueva A, Ferrauti A (2016) Impact of fitness characteristics on tennis performance in elite junior tennis players. J Strength Cond Res 30(4):989–998.  https://doi.org/10.1519/JSC.0000000000001267 CrossRefPubMedGoogle Scholar
  147. 147.
    Munivrana G, Filipcic A, Filipcic T (2015) Relationship of speed, agility, neuromuscular power, and selected anthropometrical variables and performance results of male and female junior tennis players. Coll Antropol 39(Suppl 1):109–116PubMedGoogle Scholar
  148. 148.
    Jones MT, Matthews TD, Murray M, Van Raalte J, Jensen BE (2010) Psychological correlates of performance in female athletes during a 12-week off-season strength and conditioning program. J Strength Cond Res 24(3):619–628.  https://doi.org/10.1519/JSC.0b013e3181cc23c3 CrossRefPubMedGoogle Scholar
  149. 149.
    Sekulic D, Spasic M, Mirkov D, Cavar M, Sattler T (2013) Gender-specific influences of balance, speed, and power on agility performance. J Strength Cond Res 27(3):802–811.  https://doi.org/10.1519/JSC.0b013e31825c2cb0 CrossRefPubMedGoogle Scholar
  150. 150.
    Barber-Westin SD, Hermeto AA, Noyes FR (2010) A six-week neuromuscular training program for competitive junior tennis players. J Strength Cond Res 24(9):2372–2382.  https://doi.org/10.1519/JSC.0b013e3181e8a47f CrossRefPubMedGoogle Scholar
  151. 151.
    Semenick D (1990) The T test. NCSA J 12(1):36–37Google Scholar
  152. 152.
    Myrick S (2007) Injury prevention and performance enhancement: a training program for basketball. Conn Med 71(1):5–8PubMedGoogle Scholar
  153. 153.
    Lidor R, Ziv G (2010) Physical and physiological attributes of female volleyball players—a review. J Strength Cond Res 24(7):1963–1973.  https://doi.org/10.1519/JSC.0b013e3181ddf835 CrossRefPubMedGoogle Scholar
  154. 154.
    Sassi RH, Dardouri W, Yahmed MH, Gmada N, Mahfoudhi ME, Gharbi Z (2009) Relative and absolute reliability of a modified agility T-test and its relationship with vertical jump and straight sprint. J Strength Cond Res 23(6):1644–1651.  https://doi.org/10.1519/JSC.0b013e3181b425d2 CrossRefPubMedGoogle Scholar
  155. 155.
    Pauole K, Madole K, Garhammer J, Lacourse M, Rozenek R (2000) Reliability and validity of the t-test as a measure of agility, leg power, and leg speed in college-aged men and women. J Strength Cond Res 14(4):443–450Google Scholar
  156. 156.
    Spiteri T, Nimphius S, Hart NH, Specos C, Sheppard JM, Newton RU (2014) Contribution of strength characteristics to change of direction and agility performance in female basketball athletes. J Strength Cond Res 28(9):2415–2423.  https://doi.org/10.1519/JSC.0000000000000547 CrossRefPubMedGoogle Scholar
  157. 157.
    McFarland IT, Dawes JJ, Elder CL, Lockie RG (2016) Relationship of two vertical jumping tests to sprint and change of direction speed among male and female collegiate soccer players. Sports 4(1):11.  https://doi.org/10.3390/sports4010011 CrossRefPubMedCentralGoogle Scholar
  158. 158.
    Sporis G, Jukic I, Milanovic L, Vucetic V (2010) Reliability and factorial validity of agility tests for soccer players. J Strength Cond Res 24(3):679–686.  https://doi.org/10.1519/JSC.0b013e3181c4d324 CrossRefPubMedGoogle Scholar
  159. 159.
    Magal M, Smith RT, Dyer JJ, Hoffman JR (2009) Seasonal variation in physical performance-related variables in male NCAA Division III soccer players. J Strength Cond Res 23(9):2555–2559.  https://doi.org/10.1519/JSC.0b013e3181b3ddbf CrossRefPubMedGoogle Scholar
  160. 160.
    Stewart PF, Turner AN, Miller SC (2014) Reliability, factorial validity, and interrelationships of five commonly used change of direction speed tests. Scand J Med Sci Sports 24(3):500–506.  https://doi.org/10.1111/sms.12019 CrossRefPubMedGoogle Scholar
  161. 161.
    Bishop C, Turner AN, Cree J, Maloney S, Marshall J, Jarvis P (2017) Postactivation potentiation and change of direction speed in elite academy rugby players. J Strength Cond Res.  https://doi.org/10.1519/JSC.0000000000001834
  162. 162.
    Etcheberry P (2009) Etcheberry Certificaton for Tennis. http://etcheberryexperience.com/en/info/tennis_certification. Accessed 17 Dec 2009
  163. 163.
    Chimera NJ, Swanik KA, Swanik CB, Straub SJ (2004) Effects of plyometric training on muscle-activation strategies and performance in female athletes. J Athl Train 39(1):24–31PubMedPubMedCentralGoogle Scholar
  164. 164.
    Young W, MacDonald C, Heggen T, Fitzpatrick J (1997) An evaluation of the specificity, validity and reliability of jumping tests. J Sports Med Phys Fitness 37(4):240–245PubMedGoogle Scholar
  165. 165.
    Laffaye G, Wagner PP, Tombleson TI (2014) Countermovement jump height: gender and sport-specific differences in the force-time variables. J Strength Cond Res 28(4):1096–1105.  https://doi.org/10.1519/JSC.0b013e3182a1db03 CrossRefPubMedGoogle Scholar
  166. 166.
    Enemark-Miller EA, Seegmiller JG, Rana SR (2009) Physiological profile of women’s Lacrosse players. J Strength Cond Res 23(1):39–43.  https://doi.org/10.1519/JSC.0b013e318185f07c CrossRefPubMedGoogle Scholar
  167. 167.
    McCormick BT, Hannon JC, Newton M, Shultz B, Detling N, Young WB (2016) The effects of frontal- and sagittal-plane plyometrics on change-of-direction speed and power in adolescent female basketball players. Int J Sports Physiol Perform 11(1):102–107.  https://doi.org/10.1123/ijspp.2015-0058 CrossRefPubMedGoogle Scholar
  168. 168.
    Roden D, Lambson R, DeBeliso M (2014) The effects of a complex training protocol on vertical jump performance in male high school basketball players. J Sports Sci 2:21–26Google Scholar
  169. 169.
    Mihalik JP, Libby JJ, Battaglini CL, McMurray RG (2008) Comparing short-term complex and compound training programs on vertical jump height and power output. J Strength Cond Res 22(1):47–53.  https://doi.org/10.1519/JSC.0b013e31815eee9e CrossRefPubMedGoogle Scholar
  170. 170.
    Vaverka F, Jandacka D, Zahradnik D, Uchytil J, Farana R, Supej M, Vodicar J (2016) Effect of an arm swing on countermovement vertical jump performance in elite volleyball players: FINAL. J Hum Kinet 53:41–50.  https://doi.org/10.1515/hukin-2016-0009 CrossRefPubMedPubMedCentralGoogle Scholar
  171. 171.
    Harper LD, Hunter R, Parker P, Goodall S, Thomas K, Howatson G, West DJ, Stevenson E, Russell M (2016) Test-retest reliability of physiological and performance responses to 120 minutes of simulated soccer match play. J Strength Cond Res 30(11):3178–3186.  https://doi.org/10.1519/JSC.0000000000001400 CrossRefPubMedGoogle Scholar
  172. 172.
    Hammami R, Granacher U, Makhlouf I, Behm DG, Chaouachi A (2016) Sequencing effects of balance and plyometric training on physical performance in youth soccer athletes. J Strength Cond Res 30(12):3278–3289.  https://doi.org/10.1519/JSC.0000000000001425 CrossRefPubMedGoogle Scholar
  173. 173.
    Steffen K, Bakka HM, Myklebust G, Bahr R (2008) Performance aspects of an injury prevention program: a ten-week intervention in adolescent female football players. Scand J Med Sci Sports 18(5):596–604.  https://doi.org/10.1111/j.1600-0838.2007.00708.x CrossRefPubMedGoogle Scholar
  174. 174.
    Coen MM (1986) 1985 National School Population Fitness Survey from President’s Council on Physical Fitness and Sports. Washington, DCGoogle Scholar
  175. 175.
    Bianco A, Lupo C, Alesi M, Spina S, Raccuglia M, Thomas E, Paoli A, Palma A (2015) The sit up test to exhaustion as a test for muscular endurance evaluation. Spring 4:309.  https://doi.org/10.1186/s40064-015-1023-6 CrossRefGoogle Scholar
  176. 176.
    Harding VR, Williams AC, Richardson PH, Nicholas MK, Jackson JL, Richardson IH, Pither CE (1994) The development of a battery of measures for assessing physical functioning of chronic pain patients. Pain 58(3):367–375CrossRefPubMedGoogle Scholar
  177. 177.
    Bliss A, McCulloch H, Maxwell NS (2015) The effects of an eight-week plyometric training program on golf swing performance characteristics in skilled adolescent golfers. Int J Golf Sci 4(2):120–135CrossRefGoogle Scholar
  178. 178.
    Borms D, Maenhout A, Cools AM (2016) Upper quadrant field tests and isokinetic upper limb strength in overhead athletes. J Athl Train 51(10):789–796.  https://doi.org/10.4085/1062-6050-51.12.06 CrossRefPubMedPubMedCentralGoogle Scholar
  179. 179.
    Jones MT, Lorenzo DC (2013) Assessment of power, speed, and agility in athletic, preadolescent youth. J Sports Med Phys Fitness 53(6):693–700PubMedGoogle Scholar
  180. 180.
    Lee C, Lee S, Yoo J (2014) The effect of a complex training program on skating abilities in ice hockey players. J Phys Ther Sci 26(4):533–537.  https://doi.org/10.1589/jpts.26.533 CrossRefPubMedPubMedCentralGoogle Scholar
  181. 181.
    Behringer M, Neuerburg S, Matthews M, Mester J (2013) Effects of two different resistance-training programs on mean tennis-serve velocity in adolescents. Pediatr Exerc Sci 25(3):370–384CrossRefPubMedGoogle Scholar
  182. 182.
    Kumar S (2017) Relationship between physical characteristics and ranking of young tennis players. Int J Phys Educ Sports Health 4(1):60–64Google Scholar
  183. 183.
    Ikeda Y, Kijima K, Kawabata K, Fuchimoto T, Ito A (2007) Relationship between side medicine-ball throw performance and physical ability for male and female athletes. Eur J Appl Physiol 99(1):47–55.  https://doi.org/10.1007/s00421-006-0316-4 CrossRefPubMedGoogle Scholar
  184. 184.
    Ellenbecker TS, Roetert EP (2004) An isokinetic profile of trunk rotation strength in elite tennis players. Med Sci Sports Exerc 36(11):1959–1963CrossRefPubMedGoogle Scholar
  185. 185.
    Chamari K, Chaouachi A, Hambli M, Kaouech F, Wisloff U, Castagna C (2008) The five-jump test for distance as a field test to assess lower limb explosive power in soccer players. J Strength Cond Res 22(3):944–950.  https://doi.org/10.1519/JSC.0b013e31816a57c6 CrossRefPubMedGoogle Scholar
  186. 186.
    Drinkwater EJ, Pyne DB, McKenna MJ (2008) Design and interpretation of anthropometric and fitness testing of basketball players. Sports Med 38(7):565–578CrossRefPubMedGoogle Scholar
  187. 187.
    Foran B (2001) High-performance sports conditioning. Human Kinetics, ChampaignGoogle Scholar
  188. 188.
    Hoff J (2005) Training and testing physical capacities for elite soccer players. J Sports Sci 23(6):573–582.  https://doi.org/10.1080/02640410400021252 CrossRefPubMedGoogle Scholar
  189. 189.
    Le Moal E, Rue O, Ajmol A, Abderrahman AB, Hammami MA, Ounis OB, Kebsi W, Zouhal H (2014) Validation of the Loughborough Soccer Passing Test in young soccer players. J Strength Cond Res 28(5):1418–1426.  https://doi.org/10.1519/JSC.0000000000000296 CrossRefPubMedGoogle Scholar
  190. 190.
    Lidor R, Hershko Y, Bilkevitz A, Arnon M, Falk B (2007) Measurement of talent in volleyball: 15-month follow-up of elite adolescent players. J Sports Med Phys Fitness 47(2):159–168PubMedGoogle Scholar
  191. 191.
    Little T, Williams AG (2005) Specificity of acceleration, maximum speed, and agility in professional soccer players. J Strength Cond Res 19(1):76–78.  https://doi.org/10.1519/14253.1 CrossRefPubMedGoogle Scholar
  192. 192.
    Read PJ, Hughes J, Stewart P, Chavda S, Bishop C, Edwards M, Turner AN (2014) A needs analysis and field-based testing battery for basketball. Strength Condit J 36(3):13–20.  https://doi.org/10.1519/SSC.0000000000000051 CrossRefGoogle Scholar
  193. 193.
    Sheppard JM, Young WB, Doyle TL, Sheppard TA, Newton RU (2006) An evaluation of a new test of reactive agility and its relationship to sprint speed and change of direction speed. J Sci Med Sport 9(4):342–349.  https://doi.org/10.1016/j.jsams.2006.05.019 CrossRefPubMedGoogle Scholar
  194. 194.
    Siegler J, Robergs R, Weingart H (2006) The application of soccer performance testing protocols to the non-elite player. J Sports Med Phys Fitness 46(1):44–51PubMedGoogle Scholar
  195. 195.
    Svensson M, Drust B (2005) Testing soccer players. J Sports Sci 23(6):601–618.  https://doi.org/10.1080/02640410400021294 CrossRefPubMedGoogle Scholar
  196. 196.
    Vescovi JD, Brown TD, Murray TM (2006) Positional characteristics of physical performance in Division I college female soccer players. J Sports Med Phys Fitness 46(2):221–226PubMedGoogle Scholar
  197. 197.
    Ziv G, Lidor R (2010) Vertical jump in female and male basketball players—a review of observational and experimental studies. J Sci Med Sport 13(3):332–339.  https://doi.org/10.1016/j.jsams.2009.02.009 CrossRefPubMedGoogle Scholar
  198. 198.
    Kraemer WJ, Patton JF, Gordon SE, Harman EA, Deschenes MR, Reynolds K, Newton RU, Triplett NT, Dziados JE (1995) Compatibility of high-intensity strength and endurance training on hormonal and skeletal muscle adaptations. J Appl Physiol 78(3):976–989CrossRefPubMedGoogle Scholar
  199. 199.
    Hopkins DR, Shick J, Plack JJ (1984) Basketball for boys and girls: skills test manual. Alliance for Health, Physical Education, Recreation and Dance, Reston, p. 18Google Scholar
  200. 200.
    Ali A (2011) Measuring soccer skill performance: a review. Scand J Med Sci Sports 21(2):170–183.  https://doi.org/10.1111/j.1600-0838.2010.01256.x CrossRefPubMedGoogle Scholar
  201. 201.
    McGregor SJ, Nicholas CW, Lakomy HK, Williams C (1999) The influence of intermittent high-intensity shuttle running and fluid ingestion on the performance of a soccer skill. J Sports Sci 17(11):895–903CrossRefPubMedGoogle Scholar
  202. 202.
    McGregor SJ, Hulse M, Strudwick A, Williams C (1999) The reliability and validity of two tests of soccer skill. J Sports Sci 17:815CrossRefGoogle Scholar
  203. 203.
    Haaland E, Hoff J (2003) Non-dominant leg training improves the bilateral motor performance of soccer players. Scand J Med Sci Sports 13(3):179–184CrossRefPubMedGoogle Scholar
  204. 204.
    Vanderford ML, Meyers MC, Skelly WA, Stewart CC, Hamilton KL (2004) Physiological and sport-specific skill response of olympic youth soccer athletes. J Strength Cond Res 18(2):334–342.  https://doi.org/10.1519/R-11922.1 CrossRefPubMedGoogle Scholar
  205. 205.
    Uhorchak JM, Scoville CR, Williams GN, Arciero RA, St Pierre P, Taylor DC (2003) Risk factors associated with noncontact injury of the anterior cruciate ligament: a prospective four-year evaluation of 859 West Point cadets. Am J Sports Med 31(6):831–842CrossRefPubMedGoogle Scholar
  206. 206.
    Everhart JS, Flanigan DC, Simon RA, Chaudhari AM (2010) Association of noncontact anterior cruciate ligament injury with presence and thickness of a bony ridge on the anteromedial aspect of the femoral intercondylar notch. Am J Sports Med 38(8):1667–1673.  https://doi.org/10.1177/0363546510367424 CrossRefPubMedGoogle Scholar
  207. 207.
    Hoteya K, Kato Y, Motojima S, Ingham SJ, Horaguchi T, Saito A, Tokuhashi Y (2011) Association between intercondylar notch narrowing and bilateral anterior cruciate ligament injuries in athletes. Arch Orthop Trauma Surg 131(3):371–376.  https://doi.org/10.1007/s00402-010-1254-5 CrossRefPubMedGoogle Scholar
  208. 208.
    Ireland ML, Ballantyne BT, Little K, McClay IS (2001) A radiographic analysis of the relationship between the size and shape of the intercondylar notch and anterior cruciate ligament injury. Knee Surg Sports Traumatol Arthrosc 9(4):200–205CrossRefPubMedGoogle Scholar
  209. 209.
    Simon RA, Everhart JS, Nagaraja HN, Chaudhari AM (2010) A case-control study of anterior cruciate ligament volume, tibial plateau slopes and intercondylar notch dimensions in ACL-injured knees. J Biomech 43(9):1702–1707.  https://doi.org/10.1016/j.jbiomech.2010.02.033 CrossRefPubMedPubMedCentralGoogle Scholar
  210. 210.
    Sonnery-Cottet B, Archbold P, Cucurulo T, Fayard JM, Bortolletto J, Thaunat M, Prost T, Chambat P (2011) The influence of the tibial slope and the size of the intercondylar notch on rupture of the anterior cruciate ligament. J Bone Joint Surg Br 93(11):1475–1478.  https://doi.org/10.1302/0301-620X.93B11.26905 CrossRefPubMedGoogle Scholar
  211. 211.
    Sturnick DR, Vacek PM, DeSarno MJ, Gardner-Morse MG, Tourville TW, Slauterbeck JR, Johnson RJ, Shultz SJ, Beynnon BD (2015) Combined anatomic factors predicting risk of anterior cruciate ligament injury for males and females. Am J Sports Med 43(4):839–847.  https://doi.org/10.1177/0363546514563277 CrossRefPubMedGoogle Scholar
  212. 212.
    Whitney DC, Sturnick DR, Vacek PM, DeSarno MJ, Gardner-Morse M, Tourville TW, Smith HC, Slauterbeck JR, Johnson RJ, Shultz SJ, Hashemi J, Beynnon BD (2014) Relationship between the risk of suffering a first-time noncontact ACL injury and geometry of the femoral notch and ACL: a prospective cohort study with a nested case-control analysis. Am J Sports Med 42(8):1796–1805.  https://doi.org/10.1177/0363546514534182 CrossRefPubMedGoogle Scholar
  213. 213.
    Zeng C, Gao SG, Wei J, Yang TB, Cheng L, Luo W, Tu M, Xie Q, Hu Z, Liu PF, Li H, Yang T, Zhou B, Lei GH (2013) The influence of the intercondylar notch dimensions on injury of the anterior cruciate ligament: a meta-analysis. Knee Surg Sports Traumatol Arthrosc 21(4):804–815.  https://doi.org/10.1007/s00167-012-2166-4 CrossRefPubMedGoogle Scholar
  214. 214.
    Vyas S, van Eck CF, Vyas N, Fu FH, Otsuka NY (2011) Increased medial tibial slope in teenage pediatric population with open physes and anterior cruciate ligament injuries. Knee Surg Sports Traumatol Arthrosc 19(3):372–377.  https://doi.org/10.1007/s00167-010-1216-z CrossRefPubMedGoogle Scholar
  215. 215.
    Lombardo S, Sethi PM, Starkey C (2005) Intercondylar notch stenosis is not a risk factor for anterior cruciate ligament tears in professional male basketball players: an 11-year prospective study. Am J Sports Med 33(1):29–34CrossRefPubMedGoogle Scholar
  216. 216.
    Anderson AF, Anderson CN, Gorman TM, Cross MB, Spindler KP (2007) Radiographic measurements of the intercondylar notch: are they accurate? Arthroscopy. 23(3):261–268, 268 e261–262. doi: https://doi.org/10.1016/j.arthro.2006.11.003
  217. 217.
    van Eck CF, Martins CA, Lorenz SG, Fu FH, Smolinski P (2010) Assessment of correlation between knee notch width index and the three-dimensional notch volume. Knee Surg Sports Traumatol Arthrosc 18(9):1239–1244.  https://doi.org/10.1007/s00167-010-1131-3 CrossRefPubMedPubMedCentralGoogle Scholar
  218. 218.
    Bates NA, Nesbitt RJ, Shearn JT, Myer GD, Hewett TE (2016) Posterior tibial slope angle correlates with peak sagittal and frontal plane knee joint loading during robotic simulations of athletic tasks. Am J Sports Med 44(7):1762–1770.  https://doi.org/10.1177/0363546516639303 CrossRefPubMedPubMedCentralGoogle Scholar
  219. 219.
    Beynnon BD, Vacek PM, Sturnick DR, Holterman LA, Gardner-Morse M, Tourville TW, Smith HC, Slauterbeck JR, Johnson RJ, Shultz SJ (2014) Geometric profile of the tibial plateau cartilage surface is associated with the risk of non-contact anterior cruciate ligament injury. J Orthop Res 32(1):61–68.  https://doi.org/10.1002/jor.22434 CrossRefPubMedGoogle Scholar
  220. 220.
    Bisson LJ, Gurske-DePerio J (2010) Axial and sagittal knee geometry as a risk factor for noncontact anterior cruciate ligament tear: a case-control study. Arthroscopy 26(7):901–906.  https://doi.org/10.1016/j.arthro.2009.12.012 CrossRefPubMedGoogle Scholar
  221. 221.
    Brandon ML, Haynes PT, Bonamo JR, Flynn MI, Barrett GR, Sherman MF (2006) The association between posterior-inferior tibial slope and anterior cruciate ligament insufficiency. Arthroscopy 22(8):894–899CrossRefPubMedGoogle Scholar
  222. 222.
    Dare DM, Fabricant PD, McCarthy MM, Rebolledo BJ, Green DW, Cordasco FA, Jones KJ (2015) Increased lateral tibial slope is a risk factor for pediatric anterior cruciate ligament injury: an MRI-based case-control study of 152 patients. Am J Sports Med 43(7):1632–1639.  https://doi.org/10.1177/0363546515579182 CrossRefPubMedGoogle Scholar
  223. 223.
    Feucht MJ, Mauro CS, Brucker PU, Imhoff AB, Hinterwimmer S (2013) The role of the tibial slope in sustaining and treating anterior cruciate ligament injuries. Knee Surg Sports Traumatol Arthrosc 21(1):134–145.  https://doi.org/10.1007/s00167-012-1941-6 CrossRefPubMedGoogle Scholar
  224. 224.
    Hashemi J, Chandrashekar N, Mansouri H, Gill B, Slauterbeck JR, Schutt RC Jr, Dabezies E, Beynnon BD (2010) Shallow medial tibial plateau and steep medial and lateral tibial slopes: new risk factors for anterior cruciate ligament injuries. Am J Sports Med 38(1):54–62.  https://doi.org/10.1177/0363546509349055 CrossRefPubMedGoogle Scholar
  225. 225.
    Hudek R, Fuchs B, Regenfelder F, Koch PP (2011) Is noncontact ACL injury associated with the posterior tibial and meniscal slope? Clin Orthop Relat Res 469(8):2377–2384.  https://doi.org/10.1007/s11999-011-1802-5 CrossRefPubMedPubMedCentralGoogle Scholar
  226. 226.
    Khan MS, Seon JK, Song EK (2011) Risk factors for anterior cruciate ligament injury: assessment of tibial plateau anatomic variables on conventional MRI using a new combined method. Int Orthop 35(8):1251–1256.  https://doi.org/10.1007/s00264-011-1217-7 CrossRefPubMedPubMedCentralGoogle Scholar
  227. 227.
    Rahnemai-Azar AA, Yaseen Z, van Eck CF, Irrgang JJ, Fu FH, Musahl V (2016) Increased lateral Tibial plateau slope predisposes male college football players to anterior cruciate ligament injury. J Bone Joint Surg Am 98(12):1001–1006.  https://doi.org/10.2106/JBJS.15.01163 CrossRefPubMedGoogle Scholar
  228. 228.
    Smith HC, Vacek P, Johnson RJ, Slauterbeck J, Hashemi J, Shultz S, Beynnon B (2012) Risk factors for anterior cruciate ligament injury: a review of the literature—Part 1: neuromuscular and anatomic risk. Sports Health Multidiscip Approach 4(1):69–78CrossRefGoogle Scholar
  229. 229.
    Stijak L, Herzog RF, Schai P (2008) Is there an influence of the tibial slope of the lateral condyle on the ACL lesion? A case-control study. Knee Surg Sports Traumatol Arthrosc 16(2):112–117.  https://doi.org/10.1007/s00167-007-0438-1 CrossRefPubMedGoogle Scholar
  230. 230.
    Todd MS, Lalliss S, Garcia E, DeBerardino TM, Cameron KL (2010) The relationship between posterior tibial slope and anterior cruciate ligament injuries. Am J Sports Med 38(1):63–67.  https://doi.org/10.1177/0363546509343198 CrossRefPubMedGoogle Scholar
  231. 231.
    Kramer LC, Denegar CR, Buckley WE, Hertel J (2007) Factors associated with anterior cruciate ligament injury: history in female athletes. J Sports Med Phys Fitness 47(4):446–454PubMedGoogle Scholar
  232. 232.
    Pacey V, Nicholson LL, Adams RD, Munn J, Munns CF (2010) Generalized joint hypermobility and risk of lower limb joint injury during sport: a systematic review with meta-analysis. Am J Sports Med 38(7):1487–1497.  https://doi.org/10.1177/0363546510364838 CrossRefPubMedGoogle Scholar
  233. 233.
    Carter C, Wilkinson J (1964) Persistent joint laxity and congenital dislocation of the hip. J Bone Joint Surg Br 46:40–45CrossRefPubMedGoogle Scholar
  234. 234.
    Nicholas JA (1970) Injuries to knee ligaments. Relationship to looseness and tightness in football players. JAMA 212(13):2236–2239CrossRefPubMedGoogle Scholar
  235. 235.
    Wynne-Davies R (1970) Acetabular dysplasia and familial joint laxity: two etiological factors in congenital dislocation of the hip. A review of 589 patients and their families. J Bone Joint Surg Br 52(4):704–716CrossRefPubMedGoogle Scholar
  236. 236.
    Beighton P, Horan F (1969) Orthopaedic aspects of the Ehlers-Danlos syndrome. J Bone Joint Surg Br 51(3):444–453CrossRefPubMedGoogle Scholar
  237. 237.
    Beighton P, Solomon L, Soskolne CL (1973) Articular mobility in an African population. Ann Rheum Dis 32(5):413–418CrossRefPubMedPubMedCentralGoogle Scholar
  238. 238.
    Grooms D, Appelbaum G, Onate J (2015) Neuroplasticity following anterior cruciate ligament injury: a framework for visual-motor training approaches in rehabilitation. J Orthop Sports Phys Ther 45(5):381–393.  https://doi.org/10.2519/jospt.2015.5549 CrossRefPubMedGoogle Scholar
  239. 239.
    Herman DC, Barth JT (2016) Drop-jump landing varies with baseline neurocognition: implications for anterior cruciate ligament injury risk and prevention. Am J Sports Med 44(9):2347–2353.  https://doi.org/10.1177/0363546516657338 CrossRefPubMedPubMedCentralGoogle Scholar
  240. 240.
    Swanik CB, Covassin T, Stearne DJ, Schatz P (2007) The relationship between neurocognitive function and noncontact anterior cruciate ligament injuries. Am J Sports Med 35(6):943–948.  https://doi.org/10.1177/0363546507299532 CrossRefPubMedGoogle Scholar
  241. 241.
    Swanik CB (2015) Brains and sprains: the Brain’s role in noncontact anterior cruciate ligament injuries. J Athl Train 50(10):1100–1102.  https://doi.org/10.4085/1062-6050-50.10.08 CrossRefPubMedGoogle Scholar
  242. 242.
    Alaranta H, Hurri H, Heliovaara M, Soukka A, Harju R (1994) Non-dynamometric trunk performance tests: reliability and normative data. Scand J Rehabil Med 26(4):211–215PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Cincinnati Sportsmedicine Research and Education FoundationCincinnatiUSA
  2. 2.Cincinnati Sportsmedicine and Orthopaedic CenterCincinnatiUSA

Personalised recommendations