Advertisement

Effect of Fatigue and Gender on Lower Limb Neuromuscular Function

  • Sue Barber-Westin
  • Frank R. Noyes
Chapter

Abstract

Approximately two-thirds of anterior cruciate ligament (ACL) tears are sustained under noncontact circumstances. Some investigators believe that fatigue may result in deleterious alterations in lower limb biomechanics that increase the risk of noncontact ACL injury. One important question is whether muscular fatigue uniformly alters lower limb biomechanics during cutting, pivoting, decelerating, or landing. A second question is whether fatigued female athletes have significant differences in knee and hip kinetics and kinematics and muscle activation patterns that may increase their risk of ACL injury. The issues are whether changes are required in ACL injury prevention training programs to account for fatigue-related lower limb biomechanical changes. We conducted a formal systematic review that involved 37 studies (485 female and 321 male athletes). The results indicated that published fatigue protocols did not uniformly produce alterations in lower limb biomechanical factors. There were few fatigue × gender interactions, and the question of whether the fatigued state places female athletes at greater risk of injury remains to be answered. There were no consistent data that demonstrated that the type of fatigue protocol (peripheral vs. general), athletic task selected (single-legged vs. double-legged), or task model (planned vs. reactive) strongly influenced changes in knee and hip kinematics and kinetics. Therefore, justification does not appear warranted for major changes in ACL injury prevention training programs to account for potential fatigue effects. The large variation in findings indicates the need for continued research in this area and refinement of fatigue protocols, athletic tasks selected for analysis, and methods of analysis.

Keywords

Fatigue Neuromuscular ACL injury 

References

  1. 1.
    Enoka RM, Duchateau J (2008) Muscle fatigue: what, why and how it influences muscle function. J Physiol 586(1):11–23.  https://doi.org/10.1113/jphysiol.2007.139477 CrossRefPubMedGoogle Scholar
  2. 2.
    Westerblad H, Bruton JD, Katz A (2010) Skeletal muscle: energy metabolism, fiber types, fatigue and adaptability. Exp Cell Res 316(18):3093–3099.  https://doi.org/10.1016/j.yexcr.2010.05.019 CrossRefPubMedGoogle Scholar
  3. 3.
    Gandevia SC, Allen GM, Butler JE, Taylor JL (1996) Supraspinal factors in human muscle fatigue: evidence for suboptimal output from the motor cortex. J Physiol 490(Pt 2):529–536CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Walker S, Peltonen J, Ahtiainen JP, Avela J, Hakkinen K (2009) Neuromuscular fatigue induced by an isotonic heavy-resistance loading protocol in knee extensors. J Sports Sci 27(12):1271–1279.  https://doi.org/10.1080/02640410903165085 CrossRefPubMedGoogle Scholar
  5. 5.
    Allen DG, Lamb GD, Westerblad H (2008) Skeletal muscle fatigue: cellular mechanisms. Physiol Rev 88(1):287–332.  https://doi.org/10.1152/physrev.00015.2007 CrossRefPubMedGoogle Scholar
  6. 6.
    Cairns SP, Knicker AJ, Thompson MW, Sjogaard G (2005) Evaluation of models used to study neuromuscular fatigue. Exerc Sport Sci Rev 33(1):9–16PubMedGoogle Scholar
  7. 7.
    Nagle K, Johnson B, Brou L, Landman T, Sochanska A, Comstock RD (2017) Timing of lower extremity injuries in competition and practice in high school sports. Sports Health 9(3):238–246.  https://doi.org/10.1177/1941738116685704 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Beynnon BD, Johnson RJ, Abate JA, Fleming BC, Nichols CE (2005) Treatment of anterior cruciate ligament injuries, part I. Am J Sports Med 33(10):1579–1602CrossRefPubMedGoogle Scholar
  9. 9.
    Boden BP, Dean GS, Feagin JA Jr, Garrett WE Jr (2000) Mechanisms of anterior cruciate ligament injury. Orthopedics 23(6):573–578PubMedGoogle Scholar
  10. 10.
    Shimokochi Y, Shultz SJ (2008) Mechanisms of noncontact anterior cruciate ligament injury. J Athl Train 43(4):396–408CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Benjaminse A, Habu A, Sell TC, Abt JP, Fu FH, Myers JB, Lephart SM (2008) Fatigue alters lower extremity kinematics during a single-leg stop-jump task. Knee Surg Sports Traumatol Arthrosc 16(4):400–407.  https://doi.org/10.1007/s00167-007-0432-7 CrossRefPubMedGoogle Scholar
  12. 12.
    Borotikar BS, Newcomer R, Koppes R, McLean SG (2008) Combined effects of fatigue and decision making on female lower limb landing postures: central and peripheral contributions to ACL injury risk. Clin Biomech (Bristol, Avon) 23(1):81–92.  https://doi.org/10.1016/j.clinbiomech.2007.08.008 CrossRefGoogle Scholar
  13. 13.
    Kernozek TW, Torry MR, Iwasaki M (2008) Gender differences in lower extremity landing mechanics caused by neuromuscular fatigue. Am J Sports Med 36(3):554–565CrossRefPubMedGoogle Scholar
  14. 14.
    Cortes N, Greska E, Ambegaonkar JP, Kollock RO, Caswell SV, Onate JA (2014) Knee kinematics is altered post-fatigue while performing a crossover task. Knee Surg Sports Traumatol Arthrosc 22(9):2202–2208.  https://doi.org/10.1007/s00167-013-2673-y CrossRefPubMedGoogle Scholar
  15. 15.
    Santamaria LJ, Webster KE (2010) The effect of fatigue on lower-limb biomechanics during single-limb landings: a systematic review. J Orthop Sports Phys Ther 40(8):464–473.  https://doi.org/10.2519/jospt.2010.3295 CrossRefPubMedGoogle Scholar
  16. 16.
    Thomas AC, Lepley LK, Wojtys EM, McLean SG, Palmieri-Smith RM (2015) Effects of neuromuscular fatigue on quadriceps strength and activation and knee biomechanics in individuals post-anterior cruciate ligament reconstruction and healthy adults. J Orthop Sports Phys Ther 45(12):1042–1050.  https://doi.org/10.2519/jospt.2015.5785 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Barber-Westin SD, Noyes FR (2017) Effect of fatigue protocols on lower limb neuromuscular function and implications for anterior cruciate ligament injury prevention training: a systematic review. Am J Sports Med 45(14):3388–3396.  https://doi.org/10.1177/0363546517693846 CrossRefPubMedGoogle Scholar
  18. 18.
    Augustsson J, Thomee R, Linden C, Folkesson M, Tranberg R, Karlsson J (2006) Single-leg hop testing following fatiguing exercise: reliability and biomechanical analysis. Scand J Med Sci Sports 16(2):111–120.  https://doi.org/10.1111/j.1600-0838.2005.00446.x CrossRefPubMedGoogle Scholar
  19. 19.
    Brazen DM, Todd MK, Ambegaonkar JP, Wunderlich R, Peterson C (2010) The effect of fatigue on landing biomechanics in single-leg drop landings. Clin J Sport Med 20(4):286–292.  https://doi.org/10.1097/JSM.0b013e3181e8f7dc CrossRefPubMedGoogle Scholar
  20. 20.
    Carcia C, Eggen J, Shultz S (2005) Hip-abductor fatigue, frontal-plane landing angle, and excursion during a drop-jump. J Sport Rehabil 14:321–331CrossRefGoogle Scholar
  21. 21.
    Chappell JD, Herman DC, Knight BS, Kirkendall DT, Garrett WE, Yu B (2005) Effect of fatigue on knee kinetics and kinematics in stop-jump tasks. Am J Sports Med 33(7):1022–1029CrossRefPubMedGoogle Scholar
  22. 22.
    Cortes N, Greska E, Kollock R, Ambegaonkar J, Onate JA (2013) Changes in lower extremity biomechanics due to a short-term fatigue protocol. J Athl Train 48(3):306–313.  https://doi.org/10.4085/1062-6050-48.2.03 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Cortes N, Onate J, Morrison S (2014) Differential effects of fatigue on movement variability. Gait Posture 39(3):888–893.  https://doi.org/10.1016/j.gaitpost.2013.11.020 CrossRefPubMedGoogle Scholar
  24. 24.
    Cortes N, Quammen D, Lucci S, Greska E, Onate J (2012) A functional agility short-term fatigue protocol changes lower extremity mechanics. J Sports Sci 30(8):797–805.  https://doi.org/10.1080/02640414.2012.671528 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Coventry E, O’Connor KM, Hart BA, Earl JE, Ebersole KT (2006) The effect of lower extremity fatigue on shock attenuation during single-leg landing. Clin Biomech (Bristol, Avon) 21(10):1090–1097.  https://doi.org/10.1016/j.clinbiomech.2006.07.004 CrossRefGoogle Scholar
  26. 26.
    Gehring D, Melnyk M, Gollhofer A (2009) Gender and fatigue have influence on knee joint control strategies during landing. Clin Biomech (Bristol, Avon) 24(1):82–87.  https://doi.org/10.1016/j.clinbiomech.2008.07.005 CrossRefGoogle Scholar
  27. 27.
    Geiser CF, O’Connor KM, Earl JE (2010) Effects of isolated hip abductor fatigue on frontal plane knee mechanics. Med Sci Sports Exerc 42(3):535–545.  https://doi.org/10.1249/MSS.0b013e3181b7b227 CrossRefPubMedGoogle Scholar
  28. 28.
    Hollman JH, Hohl JM, Kraft JL, Strauss JD, Traver KJ (2012) Effects of hip extensor fatigue on lower extremity kinematics during a jump-landing task in women: a controlled laboratory study. Clin Biomech (Bristol, Avon) 27(9):903–909.  https://doi.org/10.1016/j.clinbiomech.2012.07.004 CrossRefGoogle Scholar
  29. 29.
    Kellis E, Kouvelioti V (2009) Agonist versus antagonist muscle fatigue effects on thigh muscle activity and vertical ground reaction during drop landing. J Electromyogr Kinesiol 19(1):55–64.  https://doi.org/10.1016/j.jelekin.2007.08.002 CrossRefPubMedGoogle Scholar
  30. 30.
    Kernozek TW, Torry MR, VANH H, Cowley H, Tanner S (2005) Gender differences in frontal and sagittal plane biomechanics during drop landings. Med Sci Sports Exerc 37(6):1003–1012; discussion 1013.PubMedGoogle Scholar
  31. 31.
    Liederbach M, Kremenic IJ, Orishimo KF, Pappas E, Hagins M (2014) Comparison of landing biomechanics between male and female dancers and athletes, part 2: influence of fatigue and implications for anterior cruciate ligament injury. Am J Sports Med 42(5):1089–1095.  https://doi.org/10.1177/0363546514524525 CrossRefPubMedGoogle Scholar
  32. 32.
    Lucci S, Cortes N, Van Lunen B, Ringleb S, Onate J (2011) Knee and hip sagittal and transverse plane changes after two fatigue protocols. J Sci Med Sport 14(5):453–459.  https://doi.org/10.1016/j.jsams.2011.05.001 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Madigan ML, Pidcoe PE (2003) Changes in landing biomechanics during a fatiguing landing activity. J Electromyogr Kinesiol 13(5):491–498CrossRefPubMedGoogle Scholar
  34. 34.
    McLean SG, Fellin RE, Suedekum N, Calabrese G, Passerallo A, Joy S (2007) Impact of fatigue on gender-based high-risk landing strategies. Med Sci Sports Exerc 39(3):502–514.  https://doi.org/10.1249/mss.0b013e3180d47f0 CrossRefPubMedGoogle Scholar
  35. 35.
    McLean SG, Samorezov JE (2009) Fatigue-induced ACL injury risk stems from a degradation in central control. Med Sci Sports Exerc 41(8):1661–1672.  https://doi.org/10.1249/MSS.0b013e31819ca07b CrossRefPubMedGoogle Scholar
  36. 36.
    Moran KA, Marshall BM (2006) Effect of fatigue on tibial impact accelerations and knee kinematics in drop jumps. Med Sci Sports Exerc 38(10):1836–1842.  https://doi.org/10.1249/01.mss.0000229567.09661.20 CrossRefPubMedGoogle Scholar
  37. 37.
    Orishimo KF, Kremenic IJ (2006) Effect of fatigue on single-leg hop landing biomechanics. J Appl Biomech 22(4):245–254CrossRefPubMedGoogle Scholar
  38. 38.
    Ortiz A, Olson SL, Etnyre B, Trudelle-Jackson EE, Bartlett W, Venegas-Rios HL (2010) Fatigue effects on knee joint stability during two jump tasks in women. J Strength Cond Res 24(4):1019–1027.  https://doi.org/10.1519/JSC.0b013e3181c7c5d4 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Padua DA, Arnold BL, Perrin DH, Gansneder BM, Carcia CR, Granata KP (2006) Fatigue, vertical leg stiffness, and stiffness control strategies in males and females. J Athl Train 41(3):294–304PubMedPubMedCentralGoogle Scholar
  40. 40.
    Pappas E, Sheikhzadeh A, Hagins M, Nordin M (2007) The effect of gender and fatigue on the biomechanics of bilateral landings from a jump: peak values. J Sports Sci Med 6(1):77–84PubMedPubMedCentralGoogle Scholar
  41. 41.
    Patrek MF, Kernozek TW, Willson JD, Wright GA, Doberstein ST (2011) Hip-abductor fatigue and single-leg landing mechanics in women athletes. J Athl Train 46(1):31–42.  https://doi.org/10.4085/1062-6050-46.1.31 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Quammen D, Cortes N, Van Lunen BL, Lucci S, Ringleb SI, Onate J (2012) Two different fatigue protocols and lower extremity motion patterns during a stop-jump task. J Athl Train 47(1):32–41CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Ros AG, Holm SE, Friden C, Heijne AI (2013) Responsiveness of the one-leg hop test and the square hop test to fatiguing intermittent aerobic work and subsequent recovery. J Strength Cond Res 27(4):988–994.  https://doi.org/10.1519/JSC.0b013e31825feb5b CrossRefPubMedGoogle Scholar
  44. 44.
    Sanna G, O’Connor KM (2008) Fatigue-related changes in stance leg mechanics during sidestep cutting maneuvers. Clin Biomech (Bristol, Avon) 23(7):946–954.  https://doi.org/10.1016/j.clinbiomech.2008.03.065 CrossRefGoogle Scholar
  45. 45.
    Thomas AC, McLean SG, Palmieri-Smith RM (2010) Quadriceps and hamstrings fatigue alters hip and knee mechanics. J Appl Biomech 26(2):159–170CrossRefPubMedGoogle Scholar
  46. 46.
    Thomas AC, Palmieri-Smith RM, McLean SG (2011) Isolated hip and ankle fatigue are unlikely risk factors for anterior cruciate ligament injury. Scand J Med Sci Sports 21(3):359–368.  https://doi.org/10.1111/j.1600-0838.2009.01076.x CrossRefPubMedGoogle Scholar
  47. 47.
    Webster KE, Santamaria LJ, McClelland JA, Feller JA (2012) Effect of fatigue on landing biomechanics after anterior cruciate ligament reconstruction surgery. Med Sci Sports Exerc 44(5):910–916.  https://doi.org/10.1249/MSS.0b013e31823fe28d CrossRefPubMedGoogle Scholar
  48. 48.
    Wikstrom EA, Powers ME, Tillman MD (2004) Dynamic stabilization time after isokinetic and functional fatigue. J Athl Train 39(3):247–253PubMedPubMedCentralGoogle Scholar
  49. 49.
    Yamada RK, Arliani GG, Almeida GP, Venturine AM, Santos CV, Astur DC, Cohen M (2012) The effects of one-half of a soccer match on the postural stability and functional capacity of the lower limbs in young soccer players. Clinics (Sao Paulo) 67(12):1361–1364CrossRefGoogle Scholar
  50. 50.
    Zebis MK, Bencke J, Andersen LL, Alkjaer T, Suetta C, Mortensen P, Kjaer M, Aagaard P (2011) Acute fatigue impairs neuromuscular activity of anterior cruciate ligament-agonist muscles in female team handball players. Scand J Med Sci Sports 21(6):833–840.  https://doi.org/10.1111/j.1600-0838.2010.01052.x CrossRefPubMedGoogle Scholar
  51. 51.
    Slim K, Nini E, Forestier D, Kwiatkowski F, Panis Y, Chipponi J (2003) Methodological index for non-randomized studies (minors): development and validation of a new instrument. ANZ J Surg 73(9):712–716CrossRefPubMedGoogle Scholar
  52. 52.
    Wylie JD, Hartley MK, Kapron AL, Aoki SK, Maak TG (2016) Failures and reoperations after matrix-assisted cartilage repair of the knee: a systematic review. Arthroscopy 32(2):386–392.  https://doi.org/10.1016/j.arthro.2015.07.025 CrossRefPubMedGoogle Scholar
  53. 53.
    Hunter SK (2009) Sex differences and mechanisms of task-specific muscle fatigue. Exerc Sport Sci Rev 37(3):113–122.  https://doi.org/10.1097/JES.0b013e3181aa63e2 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Fritz CO, Morris PE, Richler JJ (2012) Effect size estimates: current use, calculations, and interpretation. J Exp Psychol Gen 141(1):2–18.  https://doi.org/10.1037/a0024338 CrossRefPubMedGoogle Scholar
  55. 55.
    Barber-Westin SD, Noyes FR (2010) Lower limb neuromuscular control and strength in prepubescent and adolescent male and female athletes. In: Noyes FR, Barber-Westin SD (eds) Noyes’ knee disorders: surgery, rehabilitation, clinical outcomes. Saunders, Philadelphia, pp 379–403Google Scholar
  56. 56.
    Nilstad A, Andersen TE, Kristianslund E, Bahr R, Myklebust G, Steffen K, Krosshaug T (2014) Physiotherapists can identify female football players with high knee valgus angles during vertical drop jumps using real-time observational screening. J Orthop Sports Phys Ther 44(5):358–365.  https://doi.org/10.2519/jospt.2014.4969 CrossRefPubMedGoogle Scholar
  57. 57.
    O’Kane JW, Tencer A, Neradilek M, Polissar N, Sabado L, Schiff MA (2016) Is knee separation during a drop jump associated with lower extremity injury in adolescent female soccer players? Am J Sports Med 44(2):318–323.  https://doi.org/10.1177/0363546515613076 CrossRefPubMedGoogle Scholar
  58. 58.
    Sigward SM, Havens KL, Powers CM (2011) Knee separation distance and lower extremity kinematics during a drop land: implications for clinical screening. J Athl Train 46(5):471–475CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Vacek PM, Slauterbeck JR, Tourville TW, Sturnick DR, Holterman LA, Smith HC, Shultz SJ, Johnson RJ, Tourville KJ, Beynnon BD (2016) Multivariate analysis of the risk factors for first-time noncontact ACL injury in high school and college athletes: a prospective cohort study with a nested, matched case-control analysis. Am J Sports Med 44(6):1492–1501.  https://doi.org/10.1177/0363546516634682 CrossRefPubMedGoogle Scholar
  60. 60.
    Shultz SJ, Schmitz RJ, Benjaminse A, Collins M, Ford K, Kulas AS (2015) ACL research retreat VII: an update on anterior cruciate ligament injury risk factor identification, screening, and prevention. J Athl Train 50(10):1076–1093.  https://doi.org/10.4085/1062-6050-50.10.06 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Yu B, Garrett WE (2007) Mechanisms of non-contact ACL injuries. Br J Sports Med 41(Suppl 1):i47–i51.  https://doi.org/10.1136/bjsm.2007.037192 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Cincinnati SportsMedicine Research and Education FoundationCincinnatiUSA
  2. 2.Cincinnati SportsMedicine and Orthopaedic CenterCincinnatiUSA

Personalised recommendations