Advertisement

Gender Differences in Core Strength and Lower Extremity Function During Static and Dynamic Single-Leg Squat Tests

  • Mary Lloyd IrelandEmail author
  • Lori A. Bolgla
  • Brian Noehren
Chapter

Abstract

This chapter discusses the principles of core strength and stability with regard to noncontact ACL injury. The single-leg squat test is described as a useful clinical tool to determine core stability. Associations between core strength, neuromuscular activity, and lower extremity function during this test are detailed. In addition, a newer dynamic single-leg squat test is described. These assessment tools are recommended to determine impairments, prescribe individualized interventions, and assess those athletes who may benefit from an ACL injury prevention training program.

Keywords

Single-leg squat Core stability ACL injury Neuromuscular function 

Supplementary material

Video 13.1

Performance of the timed single-leg step down with narrated instruction on how the test is performed (MP4 64996 kb)

Video 13.2

Incorrect performance of timed single-leg step down with narrated alignment of hip internal rotation and adduction resulting in knee valgus and rotation and high risk of injury position (MP4 88250 kb)

References

  1. 1.
    Buller LT, Best MJ, Baraga MG, Kaplan LD (2015) Trends in anterior cruciate ligament reconstruction in the United States. Orthop J Sports Med 3(1):2325967114563664.  https://doi.org/10.1177/2325967114563664 CrossRefPubMedGoogle Scholar
  2. 2.
    Mall NA, Chalmers PN, Moric M, Tanaka MJ, Cole BJ, Bach BR Jr, Paletta GA Jr (2014) Incidence and trends of anterior cruciate ligament reconstruction in the United States. Am J Sports Med 42(10):2363–2370.  https://doi.org/10.1177/0363546514542796 CrossRefPubMedGoogle Scholar
  3. 3.
    Donnelly CJ, Lloyd DG, Elliott BC, Reinbolt JA (2012) Optimizing whole-body kinematics to minimize valgus knee loading during sidestepping: implications for ACL injury risk. J Biomech 45(8):1491–1497.  https://doi.org/10.1016/j.jbiomech.2012.02.010 CrossRefPubMedGoogle Scholar
  4. 4.
    McCullough KA, Phelps KD, Spindler KP, Matava MJ, Dunn WR, Parker RD, Group M, Reinke EK (2012) Return to high school- and college-level football after anterior cruciate ligament reconstruction: a Multicenter Orthopaedic Outcomes Network (MOON) cohort study. Am J Sports Med 40(11):2523–2529.  https://doi.org/10.1177/0363546512456836 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Counts JB, Ireland ML (2007) Female issues in sport: risk factors and prevention of ACL injuries. In: Johnson D, Pedowitz RA (eds) Practical orthopaedic sports medicine and arthroscopy. Lippincott Wilkins & Williams, Philadelphia, pp 1–10Google Scholar
  6. 6.
    Gilchrist J, Mandelbaum BR, Melancon H, Ryan GW, Silvers HJ, Griffin LY, Watanabe DS, Dick RW, Dvorak J (2008) A randomized controlled trial to prevent noncontact anterior cruciate ligament injury in female collegiate soccer players. Am J Sports Med 36(8):1476–1483.  https://doi.org/10.1177/0363546508318188 CrossRefPubMedGoogle Scholar
  7. 7.
    Mandelbaum BR, Silvers HJ, Watanabe DS, Knarr JF, Thomas SD, Griffin LY, Kirkendall DT, Garrett W Jr (2005) Effectiveness of a neuromuscular and proprioceptive training program in preventing anterior cruciate ligament injuries in female athletes: 2-year follow-up. Am J Sports Med 33(7):1003–1010.  https://doi.org/10.1177/0363546504272261 CrossRefPubMedGoogle Scholar
  8. 8.
    Myer GD, Chu DA, Brent JL, Hewett TE (2008) Trunk and hip control neuromuscular training for the prevention of knee joint injury. Clin Sports Med 27(3):425–448., ix.  https://doi.org/10.1016/j.csm.2008.02.006 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Alentorn-Geli E, Myer GD, Silvers HJ, Samitier G, Romero D, Lazaro-Haro C, Cugat R (2009) Prevention of non-contact anterior cruciate ligament injuries in soccer players. Part 1: mechanisms of injury and underlying risk factors. Knee Surg Sports Traumatol Arthrosc 17(7):705–729.  https://doi.org/10.1007/s00167-009-0813-1 CrossRefPubMedGoogle Scholar
  10. 10.
    Gwinn DE, Wilckens JH, McDevitt ER, Ross G, Kao TC (2000) The relative incidence of anterior cruciate ligament injury in men and women at the United States naval academy. Am J Sports Med 28(1):98–102CrossRefPubMedGoogle Scholar
  11. 11.
    Hewett TE, Myer GD, Ford KR, Heidt RS Jr, Colosimo AJ, McLean SG, van den Bogert AJ, Paterno MV, Succop P (2005) Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med 33(4):492–501.  https://doi.org/10.1177/0363546504269591 CrossRefPubMedGoogle Scholar
  12. 12.
    Malinzak RA, Colby SM, Kirkendall DT, Yu B, Garrett WE (2001) A comparison of knee joint motion patterns between men and women in selected athletic tasks. Clin Biomech (Bristol, Avon) 16(5):438–445CrossRefGoogle Scholar
  13. 13.
    Fung DT, Zhang LQ (2003) Modeling of ACL impingement against the intercondylar notch. Clin Biomech (Bristol, Avon) 18(10):933–941CrossRefGoogle Scholar
  14. 14.
    Ireland ML (1999) Anterior cruciate ligament injury in female athletes: epidemiology. J Athl Train 34(2):150–154PubMedPubMedCentralGoogle Scholar
  15. 15.
    Ireland ML (2002) The female ACL: why is it more prone to injury? Orthop Clin North Am 33(4):637–651CrossRefPubMedGoogle Scholar
  16. 16.
    Leetun DT, Ireland ML, Willson JD, Ballantyne BT, Davis IM (2004) Core stability measures as risk factors for lower extremity injury in athletes. Med Sci Sports Exerc 36(6):926–934CrossRefPubMedGoogle Scholar
  17. 17.
    Shultz SJ, Schmitz RJ, Nguyen AD, Chaudhari AM, Padua DA, McLean SG, Sigward SM (2010) ACL research retreat V: an update on ACL injury risk and prevention, march 25–27, 2010, Greensboro, NC. J Athl Train 45(5):499–508.  https://doi.org/10.4085/1062-6050-45.5.499 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Khayambashi K, Ghoddosi N, Straub RK, Powers CM (2016) Hip muscle strength predicts noncontact anterior cruciate ligament injury in male and female athletes: a prospective study. Am J Sports Med 44(2):355–361.  https://doi.org/10.1177/0363546515616237 CrossRefPubMedGoogle Scholar
  19. 19.
    Hewett TE, Myer GD (2011) The mechanistic connection between the trunk, hip, knee, and anterior cruciate ligament injury. Exerc Sport Sci Rev 39(4):161–166.  https://doi.org/10.1097/JES.0b013e3182297439 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Zazulak BT, Hewett TE, Reeves NP, Goldberg B, Cholewicki J (2007) Deficits in neuromuscular control of the trunk predict knee injury risk: a prospective biomechanical-epidemiologic study. Am J Sports Med 35(7):1123–1130CrossRefPubMedGoogle Scholar
  21. 21.
    Zazulak BT, Hewett TE, Reeves NP, Goldberg B, Cholewicki J (2007) The effects of core proprioception on knee injury: a prospective biomechanical-epidemiological study. Am J Sports Med 35(3):368–373CrossRefPubMedGoogle Scholar
  22. 22.
    Earl JE, Monteiro SK, Snyder KR (2007) Differences in lower extremity kinematics between a bilateral drop-vertical jump and a single-leg step-down. J Orthop Sports Phys Ther 37(5):245–252CrossRefPubMedGoogle Scholar
  23. 23.
    Ford KR, Myer GD, Toms HE, Hewett TE (2005) Gender differences in the kinematics of unanticipated cutting in young athletes. Med Sci Sports Exerc 37(1):124–129CrossRefPubMedGoogle Scholar
  24. 24.
    Kernozek TW, Torry MR, Iwasaki M (2008) Gender differences in lower extremity landing mechanics caused by neuromuscular fatigue. Am J Sports Med 36(3):554–565CrossRefPubMedGoogle Scholar
  25. 25.
    Krosshaug T, Nakamae A, Boden BP, Engebretsen L, Smith G, Slauterbeck JR, Hewett TE, Bahr R (2007) Mechanisms of anterior cruciate ligament injury in basketball: video analysis of 39 cases. Am J Sports Med 35(3):359–367CrossRefPubMedGoogle Scholar
  26. 26.
    Nagano Y, Ida H, Akai M, Fukubayashi T (2007) Gender differences in knee kinematics and muscle activity during single limb drop landing. Knee 14(3):218–223.  https://doi.org/10.1016/j.knee.2006.11.008 CrossRefPubMedGoogle Scholar
  27. 27.
    McLean SG, Walker K, Ford KR, Myer GD, Hewett TE, van den Bogert AJ (2005) Evaluation of a two dimensional analysis method as a screening and evaluation tool for anterior cruciate ligament injury. Br J Sports Med 39(6):355–362.  https://doi.org/10.1136/bjsm.2005.018598 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Willson JD, Davis IS (2008) Utility of the frontal plane projection angle in females with patellofemoral pain. J Orthop Sports Phys Ther 38(10):606–615.  https://doi.org/10.2519/jospt.2008.2706 CrossRefPubMedGoogle Scholar
  29. 29.
    Pope MH, Panjabi M (1985) Biomechanical definitions of spinal instability. Spine (Phila Pa 1976) 10(3):255–256CrossRefGoogle Scholar
  30. 30.
    Willson JD, Dougherty CP, Ireland ML, Davis IM (2005) Core stability and its relationship to lower extremity function and injury. J Am Acad Orthop Surg 13(5):316–325CrossRefPubMedGoogle Scholar
  31. 31.
    Panjabi MM (1992) The stabilizing system of the spine. Part I. Function, dysfunction, adaptation, and enhancement. J Spinal Disord 5(4):383–389. discussion 397CrossRefPubMedGoogle Scholar
  32. 32.
    Cholewicki J, VanVliet JJ (2002) Relative contribution of trunk muscles to the stability of the lumbar spine during isometric exertions. Clin Biomech (Bristol, Avon) 17(2):99–105CrossRefGoogle Scholar
  33. 33.
    Hodges PW, Richardson CA (1997) Contraction of the abdominal muscles associated with movement of the lower limb. Phys Ther 77(2):132–142. discussion 142-134CrossRefPubMedGoogle Scholar
  34. 34.
    Neumann DA (2010) Kinesiology of the musculoskeletal system, 2nd edn. Mosby, St. LouisGoogle Scholar
  35. 35.
    Powers CM (2010) The influence of abnormal hip mechanics on knee injury: a biomechanical perspective. J Orthop Sports Phys Ther 40(2):42–51.  https://doi.org/10.2519/jospt.2010.3337 CrossRefPubMedGoogle Scholar
  36. 36.
    Souza RB, Powers CM (2009) Predictors of hip internal rotation during running: an evaluation of hip strength and femoral structure in women with and without patellofemoral pain. Am J Sports Med 37(i):579–587.  https://doi.org/10.1177/0363546508326711 CrossRefPubMedGoogle Scholar
  37. 37.
    Ageberg E, Bennell KL, Hunt MA, Simic M, Roos EM, Creaby MW (2010) Validity and inter-rater reliability of medio-lateral knee motion observed during a single-limb mini squat. BMC Musculoskelet Disord 11:265.  https://doi.org/10.1186/1471-2474-11-265 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Shirey M, Hurlbutt M, Johansen N, King GW, Wilkinson SG, Hoover DL (2012) The influence of core musculature engagement on hip and knee kinematics in women during a single leg squat. Int J Sports Phys Ther 7(1):1–12PubMedPubMedCentralGoogle Scholar
  39. 39.
    Willson JD, Ireland ML, Davis I (2006) Core strength and lower extremity alignment during single leg squats. Med Sci Sports Exerc 38(5):945–952CrossRefPubMedGoogle Scholar
  40. 40.
    Zeller BL, McCrory JL, Kibler WB, Uhl TL (2003) Differences in kinematics and electromyographic activity between men and women during the single-legged squat. Am J Sports Med 31(3):449–456CrossRefPubMedGoogle Scholar
  41. 41.
    Berns GS, Hull ML, Patterson HA (1992) Strain in the anteromedial bundle of the anterior cruciate ligament under combination loading. J Orthop Res 10(2):167–176CrossRefPubMedGoogle Scholar
  42. 42.
    Markolf KL, Burchfield DM, Shapiro MM, Shepard MF, Finerman GA, Slauterbeck JL (1995) Combined knee loading states that generate high anterior cruciate ligament forces. J Orthop Res 13(6):930–935CrossRefPubMedGoogle Scholar
  43. 43.
    Munro A, Herrington L, Carolan M (2012) Reliability of 2-dimensional video assessment of frontal-plane dynamic knee valgus during common athletic screening tasks. J Sport Rehabil 21(1):7–11CrossRefPubMedGoogle Scholar
  44. 44.
    Stickler L, Finley M, Gulgin H (2015) Relationship between hip and core strength and frontal plane alignment during a single leg squat. Phys Ther Sport 16(1):66–71.  https://doi.org/10.1016/j.ptsp.2014.05.002 CrossRefPubMedGoogle Scholar
  45. 45.
    Claiborne TL, Armstrong CW, Gandhi V, Pincivero DM (2006) Relationship between hip and knee strength and knee valgus during a single leg squat. J Appl Biomech 22(1):41–50CrossRefPubMedGoogle Scholar
  46. 46.
    Portney LG, Watkins MP (2009) Foundations of clinical research. Applications to practice, 3rd edn. Prentice Hall Health, Upper Saddle River, NJGoogle Scholar
  47. 47.
    Baldon Rde M, Lobato DF, Carvalho LP, Santiago PR, Benze BG, Serrao FV (2011) Relationship between eccentric hip torque and lower-limb kinematics: gender differences. J Appl Biomech 27(3):223–232CrossRefPubMedGoogle Scholar
  48. 48.
    Jacobs CA, Uhl TL, Mattacola CG, Shapiro R, Rayens WS (2007) Hip abductor function and lower extremity landing kinematics: sex differences. J Athl Train 42(1):76–83PubMedPubMedCentralGoogle Scholar
  49. 49.
    Geiser CF, O'Connor KM, Earl JE (2010) Effects of isolated hip abductor fatigue on frontal plane knee mechanics. Med Sci Sports Exerc 42(3):535–545.  https://doi.org/10.1249/MSS.0b013e3181b7b227 CrossRefPubMedGoogle Scholar
  50. 50.
    Patrek MF, Kernozek TW, Willson JD, Wright GA, Doberstein ST (2011) Hip-abductor fatigue and single-leg landing mechanics in women athletes. J Athl Train 46(1):31–42.  https://doi.org/10.4085/1062-6050-46.1.31 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Weeks BK, Carty CP, Horan SA (2015) Effect of sex and fatigue on single leg squat kinematics in healthy young adults. BMC Musculoskelet Disord 16:271.  https://doi.org/10.1186/s12891-015-0739-3 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Willy RW, Davis IS (2011) The effect of a hip-strengthening program on mechanics during running and during a single-leg squat. J Orthop Sports Phys Ther 41(9):625–632.  https://doi.org/10.2519/jospt.2011.3470 CrossRefPubMedGoogle Scholar
  53. 53.
    Bolgla LA, Malone TR, Umberger BR, Uhl TL (2011) Comparison of hip and knee strength and neuromuscular activity in subjects with and without patellofemoral pain syndrome. Int J Sports Phys Ther 6(4):285–296PubMedPubMedCentralGoogle Scholar
  54. 54.
    Nguyen AD, Shultz SJ, Schmitz RJ, Luecht RM, Perrin DH (2011) A preliminary multifactorial approach describing the relationships among lower extremity alignment, hip muscle activation, and lower extremity joint excursion. J Athl Train 46(3):246–256CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Souza RB, Powers CM (2009) Differences in hip kinematics, muscle strength, and muscle activation between subjects with and without patellofemoral pain. J Orthop Sports Phys Ther 39(1):12–19.  https://doi.org/10.2519/jospt.2009.2885 CrossRefPubMedGoogle Scholar
  56. 56.
    Crossley KM, Zhang WJ, Schache AG, Bryant A, Cowan SM (2011) Performance on the single-leg squat task indicates hip abductor muscle function. Am J Sports Med 39(4):866–873.  https://doi.org/10.1177/0363546510395456 CrossRefPubMedGoogle Scholar
  57. 57.
    Hollman JH, Galardi CM, Lin IH, Voth BC, Whitmarsh CL (2014) Frontal and transverse plane hip kinematics and gluteus maximus recruitment correlate with frontal plane knee kinematics during single-leg squat tests in women. Clin Biomech (Bristol, Avon) 29(4):468–474.  https://doi.org/10.1016/j.clinbiomech.2013.12.017 CrossRefGoogle Scholar
  58. 58.
    Etnoyer J, Cortes N, Ringleb SI, Van Lunen BL, Onate JA (2013) Instruction and jump-landing kinematics in college-aged female athletes over time. J Athl Train 48(2):161–171.  https://doi.org/10.4085/1062-6050-48.2.09 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Salsich GB, Graci V, Maxam DE (2012) The effects of movement pattern modification on lower extremity kinematics and pain in women with patellofemoral pain. J Orthop Sports Phys Ther 42(12):1017–1024.  https://doi.org/10.2519/jospt.2012.4231 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Sahrmann S (2002) Diagnosis and treatment of movement impairment syndromes. Mosby, Philadelphia, PAGoogle Scholar
  61. 61.
    Cowley HR, Ford KR, Myer GD, Kernozek TW, Hewett TE (2006) Differences in neuromuscular strategies between landing and cutting tasks in female basketball and soccer athletes. J Athl Train 41(1):67–73PubMedPubMedCentralGoogle Scholar
  62. 62.
    Ferber R, Davis IM, Williams DS 3rd (2003) Gender differences in lower extremity mechanics during running. Clin Biomech (Bristol, Avon) 18(4):350–357CrossRefGoogle Scholar
  63. 63.
    Ford KR, Myer GD, Smith RL, Vianello RM, Seiwert SL, Hewett TE (2006) A comparison of dynamic coronal plane excursion between matched male and female athletes when performing single leg landings. Clin Biomech (Bristol, Avon) 21(1):33–40.  https://doi.org/10.1016/j.clinbiomech.2005.08.010 CrossRefGoogle Scholar
  64. 64.
    Lawrence RK 3rd, Kernozek TW, Miller EJ, Torry MR, Reuteman P (2008) Influences of hip external rotation strength on knee mechanics during single-leg drop landings in females. Clin Biomech (Bristol, Avon) 23(6):806–813.  https://doi.org/10.1016/j.clinbiomech.2008.02.009 CrossRefGoogle Scholar
  65. 65.
    Lephart SM, Ferris CM, Riemann BL, Myers JB, Fu FH (2002) Gender differences in strength and lower extremity kinematics during landing. Clin Orthop 401:162–169CrossRefGoogle Scholar
  66. 66.
    Kline PW, Johnson DL, Ireland ML, Noehren B (2016) Clinical predictors of knee mechanics at return to sport after ACL reconstruction. Med Sci Sports Exerc 48(5):790–795.  https://doi.org/10.1249/MSS.0000000000000856 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Burnham JM, Yonz MC, Robertson KE, McKinley R, Wilson BR, Johnson DL, Ireland ML, Noehren B (2016) Relationship of hip and trunk muscle function with single leg step-down performance: implications for return to play screening and rehabilitation. Phys Ther Sport 22:66–73.  https://doi.org/10.1016/j.ptsp.2016.05.007 CrossRefPubMedGoogle Scholar
  68. 68.
    Pollard CD, Sigward SM, Ota S, Langford K, Powers CM (2006) The influence of in-season injury prevention training on lower-extremity kinematics during landing in female soccer players. Clin J Sport Med 16(3):223–227CrossRefPubMedGoogle Scholar
  69. 69.
    Prodromos CC, Han Y, Rogowski J, Joyce B, Shi K (2007) A meta-analysis of the incidence of anterior cruciate ligament tears as a function of gender, sport, and a knee injury-reduction regimen. Arthroscopy 23(12):1320–1325. e1326CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mary Lloyd Ireland
    • 1
    Email author
  • Lori A. Bolgla
    • 2
  • Brian Noehren
    • 3
  1. 1.Department of Orthopaedics and Sports Medicine, College of MedicineUniversity of KentuckyLexingtonUSA
  2. 2.Department of Physical Therapy, College of Allied Health SciencesAugusta UniversityAugustaUSA
  3. 3.Department of Rehabilitation SciencesCollege of Health Sciences University of KentuckyLexingtonUSA

Personalised recommendations