Advertisement

Proximal Risk Factors for ACL Injury: Role of the Hip Joint and Musculature

  • Susan M. Sigward
  • Christine D. Pollard
Chapter

Abstract

This chapter summarizes the role of the hip for potentially injurious knee loading and noncontact ACL injuries. Anatomical factors of the hip and knee are discussed with regard to their interdependence during functional activities. The influence of hip mechanics on knee potentially injurious knee loading during functional tasks is described. The biomechanical factors of the hip joint that are associated with stiff landing and cutting strategies (that contribute to greater knee loading) are described. Neuromuscular and muscular contributions to altered hip mechanics leading to ACL injuries are considered.

Keywords

Hip biomechanics Knee loading ACL injury Hip strength 

References

  1. 1.
    Ward SR, Eng CM, Smallwood LH, Lieber RL (2009) Are current measurements of lower extremity muscle architecture accurate? Clin Orthop Relat Res 467(4):1074–1082.  https://doi.org/10.1007/s11999-008-0594-8 CrossRefPubMedGoogle Scholar
  2. 2.
    Delp SL, Hess WE, Hungerford DS, Jones LC (1999) Variation of rotation moment arms with hip flexion. J Biomech 32(5):493–501CrossRefPubMedGoogle Scholar
  3. 3.
    Kernozek T, Torry M, Shelburne K, Durall CJ, Willson J (2013) From the gait laboratory to the rehabilitation clinic: translation of motion analysis and modeling data to interventions that impact anterior cruciate ligament loads in gait and drop landing. Crit Rev Biomed Eng 41(3):243–258CrossRefPubMedGoogle Scholar
  4. 4.
    Zhang LQ, Xu D, Wang G, Hendrix RW (2001) Muscle strength in knee varus and valgus. Med Sci Sports Exerc 33(7):1194–1199CrossRefPubMedGoogle Scholar
  5. 5.
    Boden BP, Dean GS, Feagin JA Jr, Garrett WE Jr (2000) Mechanisms of anterior cruciate ligament injury. Orthopedics 23(6):573–578PubMedGoogle Scholar
  6. 6.
    Cochrane JL, Lloyd DG, Buttfield A, Seward H, McGivern J (2007) Characteristics of anterior cruciate ligament injuries in Australian football. J Sci Med Sport 10(2):96–104.  https://doi.org/10.1016/j.jsams.2006.05.015 CrossRefPubMedGoogle Scholar
  7. 7.
    Olsen OE, Myklebust G, Engebretsen L, Bahr R (2004) Injury mechanisms for anterior cruciate ligament injuries in team handball: a systematic video analysis. Am J Sports Med 32(4):1002–1012CrossRefPubMedGoogle Scholar
  8. 8.
    Markolf KL, Gorek JF, Kabo JM, Shapiro MS (1990) Direct measurement of resultant forces in the anterior cruciate ligament. An in vitro study performed with a new experimental technique. J Bone Joint Surg Am 72(4):557–567CrossRefPubMedGoogle Scholar
  9. 9.
    Fung DT, Hendrix RW, Koh JL, Zhang LQ (2007) ACL impingement prediction based on MRI scans of individual knees. Clin Orthop Relat Res 460:210–218.  https://doi.org/10.1097/BLO.0b013e31804d2339 CrossRefPubMedGoogle Scholar
  10. 10.
    Fukuda Y, Woo SL, Loh JC, Tsuda E, Tang P, McMahon PJ, Debski RE (2003) A quantitative analysis of valgus torque on the ACL: a human cadaveric study. J Orthop Res 21(6):1107–1112.  https://doi.org/10.1016/S0736-0266(03)00084-6 CrossRefPubMedGoogle Scholar
  11. 11.
    DeMorat G, Weinhold P, Blackburn T, Chudik S, Garrett W (2004) Aggressive quadriceps loading can induce noncontact anterior cruciate ligament injury. Am J Sports Med 32(2):477–483CrossRefPubMedGoogle Scholar
  12. 12.
    Yu B, Lin CF, Garrett WE (2006) Lower extremity biomechanics during the landing of a stop-jump task. Clin Biomech (Bristol, Avon) 21(3):297–305.  https://doi.org/10.1016/j.clinbiomech.2005.11.003 CrossRefGoogle Scholar
  13. 13.
    Hewett TE, Myer GD, Ford KR, Heidt RS Jr, Colosimo AJ, McLean SG, van den Bogert AJ, Paterno MV, Succop P (2005) Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med 33(4):492–501.  https://doi.org/10.1177/0363546504269591 CrossRefPubMedGoogle Scholar
  14. 14.
    Goetschius J, Smith HC, Vacek PM, Holterman LA, Shultz SJ, Tourville TW, Slauterbeck J, Johnson RJ, Beynnon BD (2012) Application of a clinic-based algorithm as a tool to identify female athletes at risk for anterior cruciate ligament injury: a prospective cohort study with a nested, matched case-control analysis. Am J Sports Med 40(9):1978–1984.  https://doi.org/10.1177/0363546512456972 CrossRefPubMedGoogle Scholar
  15. 15.
    Krosshaug T, Nakamae A, Boden BP, Engebretsen L, Smith G, Slauterbeck JR, Hewett TE, Bahr R (2007) Mechanisms of anterior cruciate ligament injury in basketball: video analysis of 39 cases. Am J Sports Med 35(3):359–367CrossRefPubMedGoogle Scholar
  16. 16.
    Sigward SM, Havens KL, Powers CM (2011) Knee separation distance and lower extremity kinematics during a drop land: implications for clinical screening. J Athl Train 46(5):471–475CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Sigward SM, Pollard CD, Powers CM (2012) The influence of sex and maturation on landing biomechanics: implications for anterior cruciate ligament injury. Scand J Med Sci Sports 22(4):502–509.  https://doi.org/10.1111/j.1600-0838.2010.01254.x CrossRefPubMedGoogle Scholar
  18. 18.
    Pollard CD, Sigward SM, Powers CM (2007) Gender differences in hip joint kinematics and kinetics during side-step cutting maneuver. Clin J Sport Med 17(1):38–42.  https://doi.org/10.1097/JSM.0b013e3180305de8 CrossRefPubMedGoogle Scholar
  19. 19.
    Devita P, Skelly WA (1992) Effect of landing stiffness on joint kinetics and energetics in the lower extremity. Med Sci Sports Exerc 24(1):108–115CrossRefPubMedGoogle Scholar
  20. 20.
    Pollard CD, Sigward SM, Powers CM (2010) Limited hip and knee flexion during landing is associated with increased frontal plane knee motion and moments. Clin Biomech (Bristol, Avon) 25(2):142–146.  https://doi.org/10.1016/j.clinbiomech.2009.10.005 CrossRefGoogle Scholar
  21. 21.
    Shultz SJ, Nguyen AD, Leonard MD, Schmitz RJ (2009) Thigh strength and activation as predictors of knee biomechanics during a drop jump task. Med Sci Sports Exerc 41(4):857–866.  https://doi.org/10.1249/MSS.0b013e3181e3b3f CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Hashemi J, Breighner R, Chandrashekar N, Hardy DM, Chaudhari AM, Shultz SJ, Slauterbeck JR, Beynnon BD (2011) Hip extension, knee flexion paradox: a new mechanism for non-contact ACL injury. J Biomech 44(4):577–585.  https://doi.org/10.1016/j.jbiomech.2010.11.013 CrossRefPubMedGoogle Scholar
  23. 23.
    Padua DA, Marshall SW, Boling MC, Thigpen CA, Garrett WE Jr, Beutler AI (2009) The Landing Error Scoring System (LESS) is a valid and reliable clinical assessment tool of jump-landing biomechanics: the JUMP-ACL study. Am J Sports Med 37(10):1996–2002CrossRefPubMedGoogle Scholar
  24. 24.
    O'Kane JW, Tencer A, Neradilek M, Polissar N, Sabado L, Schiff MA (2016) Is knee separation during a drop jump associated with lower extremity injury in adolescent female soccer players? Am J Sports Med 44(2):318–323.  https://doi.org/10.1177/0363546515613076 CrossRefPubMedGoogle Scholar
  25. 25.
    Golden GM, Pavol MJ, Hoffman MA (2009) Knee joint kinematics and kinetics during a lateral false-step maneuver. J Athl Train 44(5):503–510.  https://doi.org/10.4085/1062-6050-44.5.503 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    McLean SG, Huang X, van den Bogert AJ (2005) Association between lower extremity posture at contact and peak knee valgus moment during sidestepping: implications for ACL injury. Clin Biomech (Bristol, Avon) 20(8):863–870.  https://doi.org/10.1016/j.clinbiomech.2005.05.007 CrossRefGoogle Scholar
  27. 27.
    Sigward SM, Powers CM (2007) Loading characteristics of females exhibiting excessive valgus moments during cutting. Clin Biomech (Bristol, Avon) 22(7):827–833CrossRefGoogle Scholar
  28. 28.
    Havens KL, Sigward SM (2015) Whole body mechanics differ among running and cutting maneuvers in skilled athletes. Gait Posture 42(3):240–245.  https://doi.org/10.1016/j.gaitpost.2014.07.022 CrossRefPubMedGoogle Scholar
  29. 29.
    Dempsey AR, Lloyd DG, Elliott BC, Steele JR, Munro BJ, Russo KA (2007) The effect of technique change on knee loads during sidestep cutting. Med Sci Sports Exerc 39(10):1765–1773.  https://doi.org/10.1249/mss.0b013e31812f56d1 CrossRefPubMedGoogle Scholar
  30. 30.
    Havens KL, Sigward SM (2015) Cutting mechanics: relation to performance and anterior cruciate ligament injury risk. Med Sci Sports Exerc 47(4):818–824.  https://doi.org/10.1249/MSS.0000000000000470 CrossRefPubMedGoogle Scholar
  31. 31.
    Sigward SM, Cesar GM, Havens KL (2015) Predictors of frontal plane knee moments during side-step cutting to 45 and 110 degrees in men and women: implications for anterior cruciate ligament injury. Clin J Sport Med 25(6):529–534.  https://doi.org/10.1097/JSM.0000000000000155 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Fredericson M, Cookingham CL, Chaudhari AM, Dowdell BC, Oestreicher N, Sahrmann SA (2000) Hip abductor weakness in distance runners with iliotibial band syndrome. Clin J Sport Med 10(3):169–175CrossRefPubMedGoogle Scholar
  33. 33.
    Ireland ML, Willson JD, Ballantyne BT, Davis IM (2003) Hip strength in females with and without patellofemoral pain. J Orthop Sports Phys Ther 33(11):671–676CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Leetun DT, Ireland ML, Willson JD, Ballantyne BT, Davis IM (2004) Core stability measures as risk factors for lower extremity injury in athletes. Med Sci Sports Exerc 36(6):926–934CrossRefPubMedGoogle Scholar
  35. 35.
    Niemuth PE, Johnson RJ, Myers MJ, Thieman TJ (2005) Hip muscle weakness and overuse injuries in recreational runners. Clin J Sport Med 15(1):14–21CrossRefPubMedGoogle Scholar
  36. 36.
    Souza RB, Powers CM (2009) Differences in hip kinematics, muscle strength, and muscle activation between subjects with and without patellofemoral pain. J Orthop Sports Phys Ther 39(1):12–19.  https://doi.org/10.2519/jospt.2009.2885 CrossRefPubMedGoogle Scholar
  37. 37.
    Powers CM (2003) The influence of altered lower-extremity kinematics on patellofemoral joint dysfunction: a theoretical perspective. J Orthop Sports Phys Ther 33(11):639–646.  https://doi.org/10.2519/jospt.2003.33.11.639 CrossRefPubMedGoogle Scholar
  38. 38.
    Khayambashi K, Ghoddosi N, Straub RK, Powers CM (2016) Hip muscle strength predicts noncontact anterior cruciate ligament injury in male and female athletes: a prospective study. Am J Sports Med 44(2):355–361.  https://doi.org/10.1177/0363546515616237 CrossRefPubMedGoogle Scholar
  39. 39.
    Baldon Rde M, Lobato DF, Carvalho LP, Santiago PR, Benze BG, Serrao FV (2011) Relationship between eccentric hip torque and lower-limb kinematics: gender differences. J Appl Biomech 27(3):223–232CrossRefPubMedGoogle Scholar
  40. 40.
    Crossley KM, Zhang WJ, Schache AG, Bryant A, Cowan SM (2011) Performance on the single-leg squat task indicates hip abductor muscle function. Am J Sports Med 39(4):866–873.  https://doi.org/10.1177/0363546510395456 CrossRefPubMedGoogle Scholar
  41. 41.
    Claiborne TL, Armstrong CW, Gandhi V, Pincivero DM (2006) Relationship between hip and knee strength and knee valgus during a single leg squat. J Appl Biomech 22(1):41–50CrossRefPubMedGoogle Scholar
  42. 42.
    Jacobs C, Uhl TL, Seeley M, Sterling W, Goodrich L (2005) Strength and fatigability of the dominant and nondominant hip abductors. J Athl Train 40(3):203–206PubMedPubMedCentralGoogle Scholar
  43. 43.
    Stickler L, Finley M, Gulgin H (2015) Relationship between hip and core strength and frontal plane alignment during a single leg squat. Phys Ther Sport 16(1):66–71.  https://doi.org/10.1016/j.ptsp.2014.05.002 CrossRefPubMedGoogle Scholar
  44. 44.
    Beutler A, de la Motte S, Marshall S, Padua D, Boden B (2009) Muscle strength and qualitative jump-landing differences in male and female military cadets: the jump-ACL study. J Sports Sci Med 8:663–671PubMedPubMedCentralGoogle Scholar
  45. 45.
    Sigward SM, Powers CM (2006) The influence of gender on knee kinematics, kinetics and muscle activation patterns during side-step cutting. Clin Biomech (Bristol, Avon) 21(1):41–48CrossRefGoogle Scholar
  46. 46.
    Nilstad A, Krosshaug T, Mok KM, Bahr R, Andersen TE (2015) Association between anatomical characteristics, knee laxity, muscle strength, and peak knee valgus during vertical drop-jump landings. J Orthop Sports Phys Ther 45(12):998–1005.  https://doi.org/10.2519/jospt.2015.5612 CrossRefPubMedGoogle Scholar
  47. 47.
    Souza RB, Powers CM (2009) Predictors of hip internal rotation during running: an evaluation of hip strength and femoral structure in women with and without patellofemoral pain. Am J Sports Med 37(3):579–587.  https://doi.org/10.1177/0363546508326711 CrossRefPubMedGoogle Scholar
  48. 48.
    Homan KJ, Norcross MF, Goerger BM, Prentice WE, Blackburn JT (2013) The influence of hip strength on gluteal activity and lower extremity kinematics. J Electromyogr Kinesiol 23(2):411–415.  https://doi.org/10.1016/j.jelekin.2012.11.009 CrossRefPubMedGoogle Scholar
  49. 49.
    Stearns KM, Powers CM (2014) Improvements in hip muscle performance result in increased use of the hip extensors and abductors during a landing task. Am J Sports Med 42(3):602–609.  https://doi.org/10.1177/0363546513518410 CrossRefPubMedGoogle Scholar
  50. 50.
    Mizner RL, Kawaguchi JK, Chmielewski TL (2008) Muscle strength in the lower extremity does not predict postinstruction improvements in the landing patterns of female athletes. J Orthop Sports Phys Ther 38(6):353–361.  https://doi.org/10.2519/jospt.2008.2726 CrossRefPubMedGoogle Scholar
  51. 51.
    Willson JD, Kernozek TW, Arndt RL, Reznichek DA, Scott Straker J (2011) Gluteal muscle activation during running in females with and without patellofemoral pain syndrome. Clin Biomech (Bristol, Avon) 26(7):735–740.  https://doi.org/10.1016/j.clinbiomech.2011.02.012 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of Southern California, Division of Biokinesiology and Physical TherapyLos AngelesUSA
  2. 2.Oregon State University CascadesBendUSA

Personalised recommendations