Empirical Methods and Coarse-Graining

Chapter

Abstract

In the previous two chapters, we learned that atomistic- and electronic-scale simulations can be performed by means of ab initio methods or semi-empirical methods such as a tight-binding method. However, we learned also that these are, at present, still restricted in their capability with respect to both the number of atoms and the simulation timescale. In order to study longer-timescale phenomena of systems composed of larger numbers of particles, it becomes necessary to introduce much easier but still atomic scale methods. If such methods are more or less based on the ab initio or semi-empirical total energies and they are not simplified too much, one may rely on these methods as a substitute. The important issue here is how to reduce the amount of necessary computation in such methods, and how to introduce parametrizations or fittings into the interatomic potentials without losing too much accuracy and reliability. In principle, it is possible to construct realistic classical potentials based on ab initio calculations. A possible methodology here is to determine classical potentials by, for example, fitting them to contour maps of the total energy, which may be obtained with an ab initio method by changing the position of one atom while fixing the coordinates of all other atoms. In this book, we do not go into details of the applications of classical molecular dynamics, since readers can refer to many good reviews. Instead, a few examples are given of how classical potentials can be constructed from ab initio theories.

References

  1. 1.
    S. Erkoc, Phys. Rep. 278, 79 (1997)CrossRefGoogle Scholar
  2. 2.
    R.M. Nieminen, M.J. Puska, M.J. Manninen (eds.), Many-Atom Interactions in Solids, vol. 48, Proceedins in Physics (Springer, Berlin, 1990)Google Scholar
  3. 3.
    H. Margenau, Rev. Mod. Phys. 11, 1 (1939)CrossRefGoogle Scholar
  4. 4.
    F. London, Z. Phys. 63, 245 (1930)CrossRefGoogle Scholar
  5. 5.
    L. Pauling, E.B. Wilson, Introduction to Quantum Mechanics (McGraw-Hill, New York, 1935)Google Scholar
  6. 6.
    G.C. Abell, Phys. Rev. B 31, 6184 (1985)CrossRefGoogle Scholar
  7. 7.
    J. Tersoff, Phys. Rev. B 39, 5566 (1989)CrossRefGoogle Scholar
  8. 8.
    J.R. Chelikowsky, J.C. Phillips, Phys. Rev. B 41, 5735 (1990)CrossRefGoogle Scholar
  9. 9.
    A.E. Carlsson, in Solid State Physics, vol. 43, ed. by H. Ehrenreich, D. Turnbull (Academic Press, San Diego, 1990), p. 1Google Scholar
  10. 10.
    M.S. Daw, M.I. Baskes, Phys. Rev. Lett. 50, 1285 (1983); Phys. Rev. B 29, 6443 (1984)Google Scholar
  11. 11.
    M.J. Stott, E. Zaremba, Phys. Rev. B 35, 7423 (1978)Google Scholar
  12. 12.
    K.W. Jacobsen, J.K. Norskov, M.J. Puska, Phys. Rev. B 35, 7423 (1987)CrossRefGoogle Scholar
  13. 13.
    F. Ercolessi, M. Parrinello, E. Tosatti, Philos. Mag. A 58, 213 (1988)CrossRefGoogle Scholar
  14. 14.
    M.W. Finnis, J.E. Sinclair, Philos. Mag. A 50, 45 (1984)Google Scholar
  15. 15.
    G.J. Ackland, V. Vitek, Phys. Rev. B 41, 10324 (1990)Google Scholar
  16. 16.
    E.A. Johnson, Phys. Rev. B 37, 3924 (1988)Google Scholar
  17. 17.
    E.A. Johnson, Phys. Rev. B 39, 12554 (1989)Google Scholar
  18. 18.
    M.I. Baskes, Phys. Rev. B 46, 2727 (1992)Google Scholar
  19. 19.
    L. Onsager, Phys. Rev. 65, 117 (1944)CrossRefGoogle Scholar
  20. 20.
    C. Itzykson, J.M. Drouffe, Statistical Field Theory (Cambridge University Press, Cambridge, 1989)Google Scholar
  21. 21.
    J. Sanchez, The Cluster Variation Method (Oxford University Press, Oxford, 1995)Google Scholar
  22. 22.
    D. de Fontaine, in Solid State Physics, vol. 47, ed. by H. Ehrenreich, D. Turnbull (Academic Press, San Diego, 1994), p. 33Google Scholar
  23. 23.
    R. Kikuchi, Phys. Rev. 81, 988 (1951)CrossRefGoogle Scholar
  24. 24.
    M.H.F. Sluiter, Y. Watanabe, D. de Fontaine, Y. Kawazoe, Phys. Rev. B 53, 6137 (1996). and references thereinCrossRefGoogle Scholar
  25. 25.
    W.H. Press, S.A. Teukolsky, W.T. Vettering, B.R. Fiannery, Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd edn. (Cambridge University Press, New York, 1992)Google Scholar
  26. 26.
    J.W. Connolly, A.R. Williams, Phys. Rev. B 27, 5169 (1983)CrossRefGoogle Scholar
  27. 27.
    R. Sahara, H. Ichikawa, H. Mizuseki, K. Ohno, H. Kubo, Y. Kawazoe, J. Chem. Phys. 120, 9297 (2004)CrossRefGoogle Scholar
  28. 28.
    K. Ohno, Sci. Rep. Res. Inst. Tohoku Univ. A 43, 17 (1997)Google Scholar
  29. 29.
    F.J. Dyson, Phys. Rev. 75, 486 (1949); Phys. Rev. 75, 1736 (1949)Google Scholar
  30. 30.
    S. Tomonaga, Prog. Theor. Phys. 1, 27 (1946); Phys. Rev. 74, 224 (1948)Google Scholar
  31. 31.
    J. Schwinger, Phys. Rev. 73, 416 (1948); Phys. Rev. 74, 1439 (1948)Google Scholar
  32. 32.
    R. Feynman, Rev. Mod. Phys. 20, 367 (1948); Phys. Rev. 74, 939, 1430 (1948)Google Scholar
  33. 33.
    J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Oxford Science Publications, Oxford, 1989)Google Scholar
  34. 34.
    H. Yukawa, Prog. Theor. Phys. Suppl. 37/38, 512 (1966)Google Scholar
  35. 35.
    C. Rebbi, Lattice Gauge Theories and Monte Carlo Simulations (World Scientific, Singapore, 1983)CrossRefGoogle Scholar
  36. 36.
    A. A. Migdal, Z. Eksper. Theor. Fiz. 69, 810 (1975); Z. Eksper. Theor. Fiz. 69, 1457 (1975)Google Scholar
  37. 37.
    L. Kadanoff, A. Houghton, Phys. Rev. B 11, 377 (1975)CrossRefGoogle Scholar
  38. 38.
    R. Sahara, H. Mizuski, K. Ohno, S. Uda, T. Fukuda, Y. Kawazoe, J. Chem. Phys. 110, 9608 (1999)CrossRefGoogle Scholar
  39. 39.
    R. Sahara, H. Mizuseki, K. Ohno, H. Kubo, Y. Kawazoe, J. Cryst. Growth 229, 610 (2001)CrossRefGoogle Scholar
  40. 40.
    S.J. Cook, P. Clancy, Phys. Rev. B 47, 7686 (1993)Google Scholar
  41. 41.
    K. Terakura, T. Oguchi, T. Mohri, K. Watanabe, Phys. Rev. B 35, 2169 (1987)Google Scholar
  42. 42.
    T. Mohri, Y. Chen, Mater. Trans. 43, 2104 (2002)Google Scholar
  43. 43.
    T.B. Massalski (ed.), Binary Alloy Phase Diagrams (American Society of Metals, Metals Park, 1986), p. 1093Google Scholar
  44. 44.
    T. Mohri, Y. Chen, J. Alloy. Compod. 383, 23 (2004)Google Scholar
  45. 45.
    Y. Misumi, S. Masatsuji, R. Sahara, S. Ishii, K. Ohno, J. Chem. Phys. 128, 234702 (2008)Google Scholar
  46. 46.
    G. Kresse, J. Hafner, Phys. Rev. B 49, 14251 (1994)Google Scholar
  47. 47.
    G. Kresse, J. Furthmuller, Comput. Mat. Sci. 6, 15 (1996)Google Scholar
  48. 48.
    S.H. Whang, Q. Feng, Y.-Q. Gao, Acta Materialia 46, 6485 (1998)Google Scholar
  49. 49.
    C.M. Kuo, P.C. Kuo, H.C. Wu, Y.D. Yao, C.H. Lin, J. Appl. Phys. 85, 4886 (1999)Google Scholar
  50. 50.
    J. Kanamori, in Dynamical Processes and Ordering on Solid Surfaces, vol. 59, Solid-State Science, ed. by A. Yoshimori, M. Tsukada (Springer, Berlin, 1985), p. 154Google Scholar
  51. 51.
    S. Masatsuji, Y. Misumi, S. Ishii, K. Ohno, 49, 2424 (2008); Y. Misumi, S. Masatsuji, K. Ohno, unpublishedGoogle Scholar
  52. 52.
    T. Miyazaki, O. Kitakami, S. Okamoto, Y. Shimada, Z. Akase, Y. Murakami, D. Shindo, Y.K. Takahashi, K. Hono, Phys. Rev. B 72, 144419 (2005)Google Scholar
  53. 53.
    S. Bhattacharyya, R. Sahara, K. Ohno (to appear)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Kaoru Ohno
    • 1
  • Keivan Esfarjani
    • 2
  • Yoshiyuki Kawazoe
    • 3
  1. 1.Department of PhysicsYokohama National UniversityYokohamaJapan
  2. 2.Department of Mechanical and Aerospace Engineering, Materials Science and Engineering and PhysicsUniversity of VirginiaCharlottesvilleUSA
  3. 3.New Industry Creation Hatchery CenterTohoku UniversitySendaiJapan

Personalised recommendations