Force-feedback-assisted Bone Drilling Simulation Based on CT Data

  • Johannes Maier
  • Michaela Huber
  • Uwe Katzky
  • Jerome Perret
  • Thomas Wittenberg
  • Christoph Palm
Conference paper
Part of the Informatik aktuell book series (INFORMAT)


In order to fix a fracture using minimally invasive surgery approaches, surgeons are drilling complex and tiny bones with a 2 dimensional X-ray as single imaging modality in the operating room. Our novel haptic force-feedback and visual assisted training system will potentially help hand surgeons to learn the drilling procedure in a realistic visual environment. Within the simulation, the collision detection as well as the interaction between virtual drill, bone voxels and surfaces are important. In this work, the chai3d collision detection and force calculation algorithms are combined with a physics engine to simulate the bone drilling process. The chosen Bullet-Physics-Engine provides a stable simulation of rigid bodies, if the collision model of the drill and the tool holder is generated as a compound shape. Three haptic points are added to the K-wire tip for removing single voxels from the bone. For the drilling process three modes are proposed to emulate the different phases of drilling in restricting the movement of a haptic device.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Haughton D, Jordan D, Malahias M, et al. Principles of hand fracture management. Open Orthop J. 2012;6:43–53.Google Scholar
  2. 2.
    Franssen BB, Schuurman AH, Van der Molen AM, et al. One century of Kirschner wires and Kirschner wire insertion techniques: a historical review. Acta Orthop Belg. 2010;76(1):1–6.Google Scholar
  3. 3.
    Tsai M, Hsieh M, Tsai C. Bone drilling haptic interaction for orthopedic surgical simulator. Comput Biol Med. 2007;37(12):1709–1718.Google Scholar
  4. 4.
    Maier J, Haug S, Huber M, et al. Development of a haptic and visual assisted training simulation concept for complex bone drilling in minimally invasive hand surgery. Proc CARS. 2017; p. 135–136.Google Scholar
  5. 5.
    Westebring - van der Putten EP, Goossens RHM, Jakimowicz JJ, et al. Haptics in minimally invasive surgery: a review. Minim Invasive Ther Allied Technol. 2008;17(1):3–16.Google Scholar
  6. 6.
    Zirkle M, Roberson DW, Leuwer R, et al. Using a virtual reality temporal bone simulator to assess otolaryngology trainees. Laryngoscope. 2007;117(2):258–263.Google Scholar
  7. 7.
    Ruspini DC, Kolarov K, Khatib O. The haptic display of complex graphical environments. Proc ICCGIT. 1997; p. 345–352.Google Scholar
  8. 8.
    Coumans E. Bullet 2.83 physics SDK manual.; 2015. Accessed: 2017-11-02.Google Scholar
  9. 9.
    Mastmeyer A, Fortmeier D, Handels H. Evaluation of direct haptic 4d volume rendering of partially segmented data for liver puncture simulation. Sci Rep. 2017;7(1):671.Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland 2018

Authors and Affiliations

  • Johannes Maier
    • 1
  • Michaela Huber
    • 2
  • Uwe Katzky
    • 3
  • Jerome Perret
    • 4
  • Thomas Wittenberg
    • 5
  • Christoph Palm
    • 1
    • 6
  1. 1.Regensburg Medical Image Computing (ReMIC)Ostbayerische Technische Hochschule Regensburg (OTH Regensburg)RegensburgDeutschland
  2. 2.Department of Trauma Surgery & Emergency DepartmentUniversity Hospital RegensburgRegensburgDeutschland
  3. 3.szenaris GmbHBremenDeutschland
  4. 4.Haption GmbHAachenDeutschland
  5. 5.Fraunhofer Institute for Integrated Circuits IISErlangenDeutschland
  6. 6.Regensburg Center of Biomedical Engineering (RCBE)OTH Regensburg and Regensburg UniversityRegensburgDeutschland

Personalised recommendations