Advertisement

Future

  • Giorgio BenedekEmail author
  • Jan Peter Toennies
Chapter
Part of the Springer Series in Surface Sciences book series (SSSUR, volume 63)

Abstract

New technological developments in molecular beam methods provide the basis for designing future HAS apparatus with greatly improved energy resolution and intensity. Some of these technological advances are reviewed and the gains to be expected are discussed. The greater intensity can be expected to lead to a great improvement in the inelastic scattering spatial resolution from the present resolution of the order of several square mm. In addition to the many areas of HAS research covered in the preceding chapters there are many more opportunities for HAS-based investigations, which although accessible with present technology, would greatly profit from the new technological developments. These new areas include the surfaces of liquids, organic films and surfaces coated with biomolecules as well as THz plasmonic systems. The present state of these research areas are briefly surveyed and possible HAS experiments are suggested. Finally the expected new challenges for the theory will be briefly outlined.

References

  1. 1.
    G. Brusdeylins, H.D. Meijer, J.P. Toennies, K. Winkelmann, in Rarefied Gas Dynamics, Proc. X Symp., in: Progress in Astronautics and Aeronautics, vol. 51, part II, J.L. Potter, ed (AIAA, New York, 1977) p. 1047Google Scholar
  2. 2.
    J.P. Toennies, K. Winkelmann, J. Chem. Phys. 66, 3965 (1977)ADSCrossRefGoogle Scholar
  3. 3.
    L.W. Bruch, W. Schöllkopf, J.P. Toennies, J. Chem. Phys. 117, 1544 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    B. Samelin, Diplomarbeit, Georg-August-Universität Göttingen (1993)Google Scholar
  5. 5.
    K. Kuhnke, K. Kern, R. David, G. Comsa, Rev. Sci. Instrum. 65, 3458 (1994)ADSCrossRefGoogle Scholar
  6. 6.
    J. Wang, V.A. Shamamian, B.R. Thomas, J.M. Wilkinson, J. Riley, Phys. Rev. Lett. 60, 696 (1988)ADSCrossRefGoogle Scholar
  7. 7.
    M. DeKieviet, D. Dubbers, M. Klein, U. Pielesm, C. Schmidt, Rev. Sci. Instr. 71, 2015 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    A.V. Kalinin, L.Yu. Rusins, J.P. Toennies, Instr. Exp. Techn. 49, 709 (2006)CrossRefGoogle Scholar
  9. 9.
    D.M. Chisnall, Dissertation, Homerton College, University of Cambridge (2012)Google Scholar
  10. 10.
    A.R. Alderwick, A.P. Jardine, H. Hedgeland, D.A. MacLaren, W. Allison, J. Ellis, Rev. Sci. Instrum. 79, 123301 (2008)Google Scholar
  11. 11.
    J.H. Malmberg, C.F. Driscoll, Phys. Rev. Lett. 44, 654 (1980)ADSCrossRefGoogle Scholar
  12. 12.
    M. Arai, in Neutron Scattering Fundamentals, ed. by F. Fernandez-Alonso, D.L. Price (Elsevier, Amsterdam, 2013)Google Scholar
  13. 13.
    M. Kunitski, S. Zeller, J. Voigtsberger, A. Kalinin, L.P.H. Schmidt, M. Schöffler, A. Czasch, W. Schöllkopf, R. Grisenti, T. Jahnke, D. Blume, R. Dörner, Science 348, 551 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    W. Schöllkopf, private communicationGoogle Scholar
  15. 15.
    O. Kornilov, private communicationGoogle Scholar
  16. 16.
    J. Voigtsberger, S. Zeller, J. Becht, N. Neumann, F. Sturm, H.-K. Kim, M. Waitz, F. Trinter, M. Kunitski, A. Kalinin, J. Wu, W. Schöllkopf, D. Bressanini, A. Szasch, J.B. Williams, K. Ullmann-Pfleger, L.P.H. Schmidt, M.S. Schöffler, R.E. Grisenti, T. Jahnke, R. Dörner, Nat. Commun. 6765, 1–6 (2014)Google Scholar
  17. 17.
    U. Even, Hindawi Pub. Corp. vol. 2014, Art. ID 636042Google Scholar
  18. 18.
    R.B. Doak, J. Phys.: Condens. Matter 16, 2863 (2004)ADSGoogle Scholar
  19. 19.
    D.P. DePonte, S.D. Kevan, F.S. Patton, Rev. Sci. Instrum. 77, 055107 (2006)Google Scholar
  20. 20.
    M. Barr, K.M. O’Donnell, A. Fahy, W. Allison, P.C. Dastoor, Meas. Sci. Technol. 23, 105901 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    J. Penfold, Rep. Prog. Phys. 64, 777–814 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    D.O. Edwards, P. Fatouros, G.G. Ihas, P. Mrozinski, S.Y. Shen, F.M. Gasparini, C.P. Tam, Phys. Rev. Lett. 34, 1153 (1975)ADSCrossRefGoogle Scholar
  23. 23.
    D.O. Edwards, J.R. Eckardt, F.M. Gasparini, Phys. Rev. A. 9, 2070 (1974)ADSCrossRefGoogle Scholar
  24. 24.
    P.M. Echenique, J.B. Pendry, Phys. Rev. Lett. 37, 561 (1976), and J. Phys. C: Solid State Phys. 9, 3183 (1976)ADSCrossRefGoogle Scholar
  25. 25.
    D.O. Edwards, W.F. Saam, Prog. Low-Temp. Phys. 7 A, 293 (1978)Google Scholar
  26. 26.
    H.J. Lauter, H. Godfrin, V.L.P. Frank, P. Leiderer, Phys. Rev. Lett. 68, 2484 (1992)ADSCrossRefGoogle Scholar
  27. 27.
    T.K. Barik, P.R. Chaudhhuri, A. Roy, S. Kar, Meas. Sci. Technol. 17, 1553 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    Y. Minami, K. Sakai, Rev. Sci. Instrum. 80, 014902 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    V. Kolevzon, G. Gerbeth, J. Phys. D Appl. Phys. 29, 2071–2081 (1996)ADSCrossRefGoogle Scholar
  30. 30.
    V. Kolevzon, J. Phys.: Condens. Matter 11, 8785–8792 (1999)ADSGoogle Scholar
  31. 31.
    B. Wehinger, M. Krisch, H. Reichert, New J. Phys. 13, 023021 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    J.A. Faust, G.M. Nathanson, Chem. Soc. Rev. 45, 3609 (2012)Google Scholar
  33. 33.
    L. Nemec, L. Chia, P. Delahay, J. Phys. Chem. 79, 2935–2940 (1975)CrossRefGoogle Scholar
  34. 34.
    W.R. Ronk, D.V. Kowalski, M. Manning, G.M. Nathanson, J. Chem. Phys. 104, 4842 (1996)ADSCrossRefGoogle Scholar
  35. 35.
    M. Manning, J.A. Morgan, D.J. Castro, G.M. Nathanson, J. Chem. Phys. 119, 12593 (2003)ADSCrossRefGoogle Scholar
  36. 36.
    E.R. Waclawik, M.C. Goh, D.J. Donaldson, J. Chem. Phys. 110, 8098 (1999)ADSCrossRefGoogle Scholar
  37. 37.
    W.W. Hayes, J.R. Manson, Phys. Rev. B 89, 045406 (2014)ADSCrossRefGoogle Scholar
  38. 38.
    M. Faubel, S. Schlemmer, J.P. Toennies, Z. Phys. D: At., Mol. Clusters 10, 269 (1988)Google Scholar
  39. 39.
    K.R. Wilson, B.S. Rude, J. Smith, C. Cappa, D.T. Co, R.D. Schaller, M. Larsson, T. Catalano, R.J. Saykally, Rev. Sci. Instrum. 75, 725 (2004)Google Scholar
  40. 40.
    B. Winter, M. Faubel, Chem. Rev. 106, 1176 (2006)CrossRefGoogle Scholar
  41. 41.
    D.P. dePonte, U. Weierstall, K. Schmidt, J. Warner, D. Starodub, J.H.C. Spence and R.B. Doak, J. Phys. D: Appl. Phys. 41, 195505 (2008)ADSCrossRefGoogle Scholar
  42. 42.
    U. Buck, R. Krohne, P. Lohbrandt, J. Chem. Phys. 106, 3205–3215 (1997)ADSCrossRefGoogle Scholar
  43. 43.
    J.W. Allen, S.A. Rice, J. Chem. Phys. 67, 5105 (1977)ADSCrossRefGoogle Scholar
  44. 44.
    J.W. Allen, S.A. Rice, J. Chem. Phys 68, 5053 (1978)ADSCrossRefGoogle Scholar
  45. 45.
    N.H. March, M.P. Tosi, Phil. Mag. 28, 91–102 (1973)ADSCrossRefGoogle Scholar
  46. 46.
    N.H. March, M.P. Tosi, Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 330, 373 (1972)Google Scholar
  47. 47.
    Ch. Wöll (ed.), in Organic Electronics: Structural and Electronic Properties of OFETs, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2009)Google Scholar
  48. 48.
    S. Günes, H. Neugebauer, N.S. Sariciftci, Chem. Rev. 107, 1134 (2007)CrossRefGoogle Scholar
  49. 49.
    V.A. Dediu, L.E. Hueso, I. Bergenti, C. Taliani, Nat. Mat. 8, 707 (2009)CrossRefGoogle Scholar
  50. 50.
    J.E. Anthony, Angew. Chem. Int. Ed. 47, 452–483 (2008)CrossRefGoogle Scholar
  51. 51.
    S.M. Barlow, R. Raval, Surf. Sci. Rep. 50, 201–341 (2003)ADSCrossRefGoogle Scholar
  52. 52.
    J.A.A.W. Elemans, S. Lei, S. DeFeyter, Angew. Chem. Int. Ed. 48, 7298–7332 (2009)CrossRefGoogle Scholar
  53. 53.
    G. Witte, C. Wöll, J. Mat. Res. 19, 1889–1916 (2004)ADSCrossRefGoogle Scholar
  54. 54.
    G. Witte, Ch. Wöll, in Organic Electronics: Structural and Electronic Properties of OFETs, Ch. Wöll (ed.) Wiley-VCH Verlag GmbG & Co. KGaA, Weinheim (2009) p. 207Google Scholar
  55. 55.
    J.M. Gottfried, Surf. Sci. Rep. 70, 259–379 (2015)ADSCrossRefGoogle Scholar
  56. 56.
    K.-H. Ernst, Phys. Status Solidi B 249, 2057–2088 (2012)ADSCrossRefGoogle Scholar
  57. 57.
    C.A. Meli, E.F. Greene, G. Lange, J.P. Toennies, Phys. Rev. Lett. 74, 2054 (1995)ADSCrossRefGoogle Scholar
  58. 58.
    A.L. Glebov, J.P. Toennies, S. Vollmer, G. Benedek, Europhys. Lett. 46(3), 369–375 (1999)ADSCrossRefGoogle Scholar
  59. 59.
    P. Gregory, J. Prophyrins Phthalocyanines, 432 (2000)Google Scholar
  60. 60.
    F.S. Tautz, Progr. Surf. Sci. 82, 479–520 (2007)ADSCrossRefGoogle Scholar
  61. 61.
    L. Kilian, A. Hauschild, R. Remirov, S. Soubatch, A. Schöll, A. Bendounan, F. Reinert, T.-L. Lee, F.S. Tautz, M. Sokolowski, E. Umbach, Phys. Rev. Lett. 100, 136103 (2008)ADSCrossRefGoogle Scholar
  62. 62.
    C.R. Braats, G. Öhl, P. Jakob, J. Chem. Phys. 136, 134706 (2012)ADSCrossRefGoogle Scholar
  63. 63.
    S. Duhm, A. Gerlach, I. Salzmann, B. Bröler, R.L. Johnson, F. Schreiber, N. Koch, Science Direct. Org. Electron. 9, 111–118 (2008)CrossRefGoogle Scholar
  64. 64.
    L. Romaner, D. Nabok, P. Puschnig, E. Zojer, C. Ambrosch-Draxl, New J. Phys. 11, 053010 (2009)ADSCrossRefGoogle Scholar
  65. 65.
    Y. Zou, L. Kilian, A. Schöll, Th. Schmidt, R. Fink, E. Umbach, Surf. Sci 600, 1240 (2006)Google Scholar
  66. 66.
    B. Stadtmüller, M. Gruenewald, J. Peuker, R. Forker, T. Fritz, C. Kumpf, J. Phys. Chem. 118, 28592–28602 (2014)Google Scholar
  67. 67.
    J.A. Lau, Masterarbeit, Georg-August-Universität Göttingen (2016)Google Scholar
  68. 68.
    D. Fuhrmann, Bericht 14/1998, Max-Planck-Institut für Strömungsforchung, Göttingen (1998)Google Scholar
  69. 69.
    Y. Wang, K. Wu, J. Kröger, R. Berndt, AIP Adv. 2, 041402 (2012)CrossRefGoogle Scholar
  70. 70.
    A. Paciaroni, A. Orecchini, M. Haertlein, M. Moulin, N. Conti, A. DeFrancesco, C. Petrillo, F. Sacchetti, J. Phys. Chem. B 116, 3861–3865 (2012)CrossRefGoogle Scholar
  71. 71.
    G. Acbas, K.A. Niessen, E.H. Snell, A.G. Markelz, Nat. Commun. 5, 3076 (2014)ADSCrossRefGoogle Scholar
  72. 72.
    B.S. Kalanoor, M. Ronen, Z. Oren, D. Gerber, Y.R. Tischler, ACS Omega 2, 1232 (2017)CrossRefGoogle Scholar
  73. 73.
    M. Diehl, W. Doster, W. Petry, H. Schober, Biophys. J. 73, 2726–2732 (1997)CrossRefGoogle Scholar
  74. 74.
    B. Kasemo, Surf. Sci. 500, 656–677 (2002)ADSCrossRefGoogle Scholar
  75. 75.
    J.V. Barth, Annu. Rev. Phys. Chem. 58, 375–407 (2007)ADSCrossRefGoogle Scholar
  76. 76.
    D. Costa, C.-M. Pradier, F. Tielens, L. Savio, Surf. Sci. Rep. 70, 449–553 (2015)ADSCrossRefGoogle Scholar
  77. 77.
    A. Schiffrin, A. Riemann, W. Auwärter, Y. Pennec, A. Weber-Bargioni, D. Devetko, A. Cossaro, A. Morgante, J.V. Barth, PNAS 13, 5279–5284 (2007)ADSCrossRefGoogle Scholar
  78. 78.
    J.-F. Lambert, Orig. Life Evol. Biosph. 38, 211–242 (2008)ADSCrossRefGoogle Scholar
  79. 79.
    J.D. Bernal, The Physical Basis of Life (Routledge and Kegan Paul, London, 1951)Google Scholar
  80. 80.
    S. Rauschenbach, M. Ternes, L. Harnau, K. Kern, Annu. Rev. Annal. Chem. 9, 16.1–16.26 (2016)Google Scholar
  81. 81.
    S. Abb, L. Harnau, R. Gutzler, S. Rauschenbach, K. Kermn, Nat. Commun. 10335, 1–7 (2015)Google Scholar
  82. 82.
    S. Rauschenbach, G. Rinke, R. Gutzler, S. Abb, A. Albarhash, D. Le, T.S. Rahman, M. Dürr, L. Harnau, K. Kern, ACS Nano 11, 2420–2427 (2017)CrossRefGoogle Scholar
  83. 83.
    G. Rinke, S. Rauschenbach, L. Harnau, A. Albarghash, M. Pauly, K. Kern, Nano Lett. 14, 5609–5615 (2014)ADSCrossRefGoogle Scholar
  84. 84.
    G.V. Hartland, Chem. Rev. 111, 3858 (2011)CrossRefGoogle Scholar
  85. 85.
    A.E. Saunders, B.A. Korgel, in Handbook of Nanophysics: Nanoparticles and Quantum Dots, ed. K.D. Sattler (CRC Press, 2010) p. 20/1Google Scholar
  86. 86.
    N. Goubet, M.P. Pileni, J. Phys. Chem. Lett. 2, 1024–1031 (2011)CrossRefGoogle Scholar
  87. 87.
    M.P. Pileni, J. Phys.: Condens. Matter 23, 503102 (2011)Google Scholar
  88. 88.
    M.P. Pileni, Account. Chem. Res. 45, 1965–1972 (2012)CrossRefGoogle Scholar
  89. 89.
    M.P. Pileni, J. Col. Interf. Sci. 388, 1–8 (2012)ADSCrossRefGoogle Scholar
  90. 90.
    M.P. Pileni, EPL 109, 58001 (2015)ADSCrossRefGoogle Scholar
  91. 91.
    A. Courty, I. Lisiecki, M.P. Pileni, J. Chem. Phys. 116, 8074 (2002)ADSCrossRefGoogle Scholar
  92. 92.
    V. Mankad, P.K. Jha, T.R. Ravindran, J. Appl. Phys. 113, 074303 (2013)ADSCrossRefGoogle Scholar
  93. 93.
    L. Saviot, D.B. Murray, Phys. Rev. B 79, 214101 (2009)ADSCrossRefGoogle Scholar
  94. 94.
    J.J. Wie, P. Yang, H. Portales, P.-A. Albouy, M.P. Pileni, J. Phys. Chem. C, 13732–13738 (2016)Google Scholar
  95. 95.
    P. Piseri, H.V. Tafreshi, P. Milani, Curr. Op. Solid State and Mat. Sci. 8, 195–202 (2004)Google Scholar
  96. 96.
    J.B. Chen, J.F. Zhou, A. Häfele, C.R. Yin, W. Kronmüller, M. Han, H. Haberland, Eur. Phys. J. D 34, 251 (2005)ADSCrossRefGoogle Scholar
  97. 97.
    A. Glebov, V. Senz, J.P. Toennies, Ph. Lambin, G. Gensterblum, P. Senet, A.A. Lucas, Phys. Rev. B 56, 9874 (1997)ADSCrossRefGoogle Scholar
  98. 98.
    A. Glebov, V. Senz, J.P. Toennies, G. Gensterblum, J. Appl. Phys. 82, 2329 (1997)Google Scholar
  99. 99.
    E. Fermi, Nuovo Cimento 4, 157 (1934)CrossRefGoogle Scholar
  100. 100.
    U. Paltzer, D. Schmicker, F.W. de Wette, U. Schröder, J.P. Toennies, Phys. Rev. B 54, 11989 (1996)ADSCrossRefGoogle Scholar
  101. 101.
    U. Harten, J.P. Toennies, Ch. Wöll, Faraday Discuss. Chem. Soc. 80, 137 (1985)CrossRefGoogle Scholar
  102. 102.
    C.S. Jayanthi, H. Bilz, W. Kress, G. Benedek, Phys. Rev. Lett. 59, 795 (1987)ADSCrossRefGoogle Scholar
  103. 103.
    G. Benedek, D. Campi, J.P. Toennies, Interaction of atoms with surfaces and surface phonons, in Physics of Solid Surfaces, Subvol. A, Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology – New Ser., Subvol. 45A, ed. by P. Chiaradia, G.F. Chiarotti, Chap. 10, 572–646 (2015) ISSN 1615-1925; ISBN 978-3-662-47735-9Google Scholar
  104. 104.
    S. Baroni, S. De Gironcoli, A. Dal Corso, Rev. Mod. Phys. 73, 515 (2001)ADSCrossRefGoogle Scholar
  105. 105.
    V. Chis, B. Hellsing, G. Benedek, M. Bernasconi, E.V. Chulkov, J.P. Toennies, Phys. Rev. Letters, 101, 206102 (2008); ibidem 103, 069902 (2009) (E)Google Scholar
  106. 106.
    I.Yu. Sklyadneva, G. Benedek, E.V. Chulkov, P.M. Echenique, R. Heid, K.-P. Bohnen, J.P. Toennies, Phys. Rev. Lett. 107, 095502 (2011)ADSCrossRefGoogle Scholar
  107. 107.
    P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. De Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, J. Phys.:Condens. Matter, 2009, 21, 395502Google Scholar
  108. 108.
    X. Gonze et al., Comput. Phys. Commun. 180, 2852 (2009)CrossRefGoogle Scholar
  109. 109.
    G. Kresse, J. Furtmüller, Phys. Rev. B 54, 11169 (1996)ADSCrossRefGoogle Scholar
  110. 110.
    Clark, S.J., Segall, M.D., Pickard, C.J., Probert, P.J., Refson, K., Payne, M.C.: Z. Kristall. 220(5–6), 567 (2005)Google Scholar
  111. 111.
    D. Vanderbilt, Phys. Rev. B 32, 8412 (1985)ADSCrossRefGoogle Scholar
  112. 112.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  113. 113.
    R. Heid, K.P. Bohnen, I.Y. Sklyadneva, E.V. Chulkov, Phys. Rev. B 81, 174527 (2010)ADSCrossRefGoogle Scholar
  114. 114.
    S. Grimme, J. Comp. Chem. 27, 1787 (2006)CrossRefGoogle Scholar
  115. 115.
    D. Campi, M. Bernasconi, G. Benedek, J.P. Toennies, J. Phys. Chem. C 119(26), 14579 (2015)CrossRefGoogle Scholar
  116. 116.
    J.M. Pitarke, V.M. Silkin, E.V. Chulkov, P.M. Echenique, Rep. Prog. Phys. 70, 1 (2007)ADSCrossRefGoogle Scholar
  117. 117.
    V.M. Silkin, J.M. Pitarke, E.V. Chulkov, P.M. Echenique, Phys. Rev. B 72, 115435 (2005)ADSCrossRefGoogle Scholar
  118. 118.
    B. Diaconescu, K. Pohl, L. Vattuone, L. Savio, Ph Hofmann, V.M. Silkin, J.M. Pitarke, E.V. Chulkov, P.M. Echenique, D. Farías, M. Rocca, Nature 448, 57 (2007)ADSCrossRefGoogle Scholar
  119. 119.
    G.J. Kroes, Phys. Chem. Chem. Phys. 14, 14966 (2012)CrossRefGoogle Scholar
  120. 120.
    D.J. Auerbach, A.M. Wodtke, in Dynamics of Gas-Surface Interactions, ed. by R. Díez Muiño, H.F. Busnengo, Springer Ser. Surf. Sci. 50 (Springer, Berlin, 2013) p. 267Google Scholar
  121. 121.
    R. Díez Muiño, H.F. Busnengo (eds.), Dynamics of Gas-Surface Interactions (Springer, Berlin, 2013)Google Scholar
  122. 122.
    K. Shakouri, J. Behler, J. Meyer, G.-J. Kroes, J. Phys. Chem. Lett. 8, 2131 (2017)CrossRefGoogle Scholar
  123. 123.
    O. Buenermann, H. Jiang, Y. Dorenkamp, A. Kandratsenka, S.M. Janke, D.J. Auerbach, A.M. Wodtke, Science 350, 1346 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Università di Milano-BicoccaMilanItaly
  2. 2.Max Planck Institute for Dynamics and Self-OrganizationGöttingenGermany
  3. 3.Donostia International Physics CenterDonostia/San SebastianSpain

Personalised recommendations