Advertisement

Höhenhirnödem

  • F. BergholdEmail author

Zusammenfassung

Das Höhenhirnödem ist zwar pathophysiologisch noch durchaus nicht ausreichend geklärt, stellt aber die gefährlichste Form der akuten Höhenkrankheit dar. Kann kein rechtzeitiger Abtransport in tiefe Lagen erfolgen, beträgt die Letalität rund 100 %. Es handelt sich um generalisierte neurologische Symptomatologien mit dem klassischen Leitsymptom Ataxie. Die Prävention durch höhentaktisch angepasstes Verhalten steht im Vordergrund. Alle medikamentösen Notfalltherapien, wie v. a. Dexamethason, dienen ausschließlich zur Überbrückung, wenn ein rascher Abtransport durch äußere widrige Umstände verzögert wird. Nicht selten ist das Höhenhirnödem mit einem Höhenlungenödem kombiniert und verläuft dann besonders dramatisch.

Literatur

  1. Ainslie PN, Ogoh S (2010) Regulation of cerebral blood flow in mammals during chronic hypoxia: a matter of balance. Exp Physiol 95:251–262CrossRefGoogle Scholar
  2. Ainslie PN, Subudhi AW (2014) Cerebral blood flow at high altitude. High Alt Med Biol 15(2):133–140CrossRefGoogle Scholar
  3. Bailey DM, Bärtsch P, Baumgartner RW (2009) Emerging concepts in acute mountain sickness and high-altitude cerebral edema: from the molecular to the morphological. Cell Mol Life Sci 66(22):3583–3594CrossRefGoogle Scholar
  4. Basnyat B, Lemaster J, Litch JA (1999) Everest or bust: a cross sectional, epidemiological study of acute mountain sickness at 4243 meters in the Himalayas. Aviat Space Envir Med 70(9):867–873Google Scholar
  5. Basnyat B, Subedi D, Sleggs J, Lemaster J, Bhasyal G, Aryal B, Subedi N (2000) Disoriented and ataxic pilgrims: an epidemiological study of acute mountain sickness and high-altitude cerebral edema at a sacred lake at 4300 m in the Nepal Himalayas. Wild Environ Med 11:89–93CrossRefGoogle Scholar
  6. Basnyat B, Murdoch DR (2003) High-altitude illness. Lancet 361(9373):1967–1974CrossRefGoogle Scholar
  7. Basnyat B (2004) Clinical images of HACE. Wild Environ Med 15:53–55CrossRefGoogle Scholar
  8. Bärtsch P, Vock P, Franciolli M (1990) High altitude pulmonary edema after successful treatment of acute mountain sickness with dexamethasone. J Wild Med 1:162–164CrossRefGoogle Scholar
  9. Bärtsch P, Bailey DM, Berger MM, Knauth M, Baumgartner RW (2004) Acute mountain sickness: controversies, advances and future directions. High Alt Med Biol 5:110–124Google Scholar
  10. Berghold F (1988) Sicheres Bergsteigen – Alpine Unfälle und wie man sie vermeidet. Bruckmann, MünchenGoogle Scholar
  11. Berghold F, Schaffert W (2009) Handbuch der Trekking- und Expeditionsmedizin, 7. Aufl. Eigenverlag des DAV-Summit-Club, MünchenGoogle Scholar
  12. Bird BA, Wright AD, Wilson MH, Johnson BG, Imray CH (2011) High altitude ataxia – its assessment and relevance. Wild Environ Med 22:172–176CrossRefGoogle Scholar
  13. Borgstrom L, Johannson H, Siesjob K (1975) Relationship between arterial PO2 and cerebral blood flow in hypoxic hypoxia. Acta Physiol Scand 93:423–432Google Scholar
  14. Faoro V, Huez S, Vanderpool RR, Groepenhoff H, de Bisschop C, Martinot JB, Lamotte M, Pavelescu A, Guenard H, Naeije R (2013) Pulmonary circulation and gas exchange at exercise in Sherpas at high altitude. J Appl Physiol (Publ before print Jul 18)Google Scholar
  15. Ferrazini G, Maggiorini M, Kriemler S (1987) Successful treatment of acute mountain sickness with dexamethasone. BMJ 294:1380–1382CrossRefGoogle Scholar
  16. Ferreira P, Grundy P (1985) Dexamethasone in the treatment of acute mountain sickness. N Engl J Med 312:1390Google Scholar
  17. Grissom CK (2011) Ataxia is still an important clinical finding in severe high altitude illness. Wild Environ Med 22:105–106CrossRefGoogle Scholar
  18. Hackett PH, Roach RC, Wood RA, Fouteh RG, Meehan RT, Rennnie D, Mills HJ (1988) Dexamethasone for prevention and treatment of acute mountain sickness. Aviation Space Environ Med 59:950–954Google Scholar
  19. Hackett PH, Yarnell PR, Hil R et al (1998) High altitude cerebral edema evaluated with magnetic resonance imaging. JAMA 280:1920–1925CrossRefGoogle Scholar
  20. Hackett PH (1988) The cerebral etiology of high-altitude cerebral edema and acute mountain sickness. J Wild Environ Med 10:97–109CrossRefGoogle Scholar
  21. Houston C, Harris DE, Zeman EJ (2005) High altitude cerebral edema. In: Going higher, the mountaineers book, 5. Aufl. S 116–126Google Scholar
  22. Jansen GFA, Krins A, Basnyat B, Bosch A, Odoom JA (2000) Cerebral autoregulation in subjects adapted and non adapted to high altitude. Stroke 31: 2314–2318CrossRefGoogle Scholar
  23. Kallenberg K, Bailey DM, Christ S et al (2007) Magnetic resonance imaging evidence of cytotoxic cerebral edema in acute mountain sickness. J Cereb Blood Flow Metab 28:1635–1642Google Scholar
  24. Kallenberg K, Denert C, Dorfler A et al (2008) Microhemorrhages in non-fatal high-altitude cerebral edema. J Cereb Blood Flow Metab 28:A1635–1642CrossRefGoogle Scholar
  25. Keller HR, Maggiorini M, Bärtsch P, Ölz O (1995) Simulated descent versus dexamethasone in treatment of acute mountain sickness a randomised trial. BMS 310:1232–1235Google Scholar
  26. Levine BD, Yoshimura K, Kobayashi T, Fukushima M, Shibamoto T, Ueda G (1989) Dexamethasone in the treatment of acute mountain sickness. N Engl J Med 321:1707–1713CrossRefGoogle Scholar
  27. Levine BD (1999) Dynamic cerebral autoregulation at high altitude. Textbook of the 11th Hypoxia Symposium,118, JasperGoogle Scholar
  28. Levine BD, Yohimura K, Kobayashi T, Fukushima M, Shibamoto T, Ueda G (1989) Dexamethasone in the treatment of acute mountain sickness. N Engl J Med 321:1707–1713CrossRefGoogle Scholar
  29. Luks AM, McIntosh SE, Grissom CK, Auerbach PS, Rodway GW, Schoene RB, Zafren K, Hackett PH (2010) Wilderness Medical Society consensus guidelines for the prevention and treatment of acute altitude illness. Wild Environ Med 21:146–155CrossRefGoogle Scholar
  30. Maggiorini M, Bühler B, Walter M, Ölz O (1990) Prevalence of acute mountain sickness in the Swiss Alps. BMJ 13:1186–1192Google Scholar
  31. Mairer K, Gabel M, Burtscher M (2012) MRI evidence acute mountain sickness is not associated with cerebral edema formation during simulated high altitude. PLoS One 7(11):e50334CrossRefGoogle Scholar
  32. Petousi N, Croft QPP, Cavalleri GL et al (2013) Tibetans living at sea level have a hyporesponsive hypoxia-inducible factor (HIF) system and blunted physiological response to hypoxia. J Appl Physiol Sept 12 jap.00535.2013Google Scholar
  33. Semenza GL, Wang GL (1992) A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Moll Cell Biol 12:5447–5454CrossRefGoogle Scholar
  34. Schoene RB (1999) The brain at high altitude. Wild Environ Med 10:93–96CrossRefGoogle Scholar
  35. West JB, Schoene RB, Luks AM, Milledge JS (2013) Genetics and high altitude. In: High altitude medicine and physiology, 5. Aufl. CRC-Press, S 40–52Google Scholar
  36. West JB, Schoene RB, Luks AM, Milledge JS (2013) High altitude cerebral edema. In: High altitude medicine and physiology, 5. Aufl. CRC-Press, S 300–308Google Scholar
  37. West JB (2014) Central nervous system and high altitude. High Alt Med Biol 15(2):123–132Google Scholar
  38. Willmann G, Gekeler F, Schommer K, Bärtsch P (2014) Update on high altitude cerebral edema including recent work on the EYE. High Alt Med Biol 15(2):112–122CrossRefGoogle Scholar
  39. Wilson MH, Wright A, Imray CHE (2014) Intracranial pressure at altitude. High Alt Med Biol 15(2):133–140CrossRefGoogle Scholar
  40. Yan Xiaodan (2014) Cognitive impairments at high altitudes and adaptation. High Alt Med Biol 15(2):141–145Google Scholar
  41. Zafren K (1998) Gamow bag for high-altitude cerebral edema. Lancet 352:325–326CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Universität SalzburgIFFB Sport- und BewegungswissenschaftenSalzburgÖsterreich

Personalised recommendations