Nanostructured Materials for Advanced Energy Conversion and Storage Devices: Safety Implications at End-of-Life Disposal
Abstract
The global demand for electricity has gradually increased to 20,000 TWh in 2016 at approximately 2% per decade. The top four resources to generate electricity are coal, natural gas, nuclear, and renewables. In the USA, natural gas has displaced coal as the primary source for the generation of electricity. In the transport sector, fossil fuels dominate. The two major drawbacks of using fossil fuels for energy and transport are the harmful emission of oxides of carbon, nitrogen, and sulfur and the limited availability of these resources if measured in centuries rather than years. To offset these short- and long-term problems, researchers have proposed the development of fuel cells (FCs) as a potential solution. The FCs convert fuels (such as hydrogen) into water and electricity with zero or near-zero emission of harmful gases. Hydrogen is generated using either water splitting or steam reformation of methane, coal gasification, or from methanol. The above alternative solutions require chemical and electrical energy and are not necessarily carbon dioxide neutral. To improve the efficiency and lower the cost of the fuel cell stack, researchers have focused on replacement of platinum anode/cathodes with other non-precious metals. Their potential toxicity and interactions with the environment, animals, and people have received little attention, unlike our understanding of the toxicity of gasoline volatiles, particulate matter, and organic residues. In this study, we evaluated the potential biological effects using core-shelled Fe3O4 magnetic nanoparticles (MNPs) as an example. The toxicity results indicate that electrocatalyst with appropriate structural support may be biologically benign. The toxicity of these catalysts may be an issue in the near future since the number of electric and hydrogen-powered automobiles with fuel cells is expected to increase. This increased utilization will lower consumption of fossil fuels, as well as emission of greenhouses gases, but will increase a secondary risk of the effects of these electrocatalysts. Our results demonstrate the minimization of oxidative stress and cellular damage if encapsulated with natural product extracts.
Keywords
World energy demand Fuel cells Nanoparticles Metal oxide Toxicity Nitric oxide PolicyNotes
Acknowledgments
The authors wish to thank the College of Arts & Sciences (CoA&S, Dr. Bashir, 160336-00002), ACS-PRF (Liu, 53827-UR10), Summer Faculty Fellowship Program (Bashir), Welch Departmental Grant (AC-0006), NSF-MRI acquisition (Liu), University Research Awards (160315-00015, Liu), and RDF grants (160345-00005, Liu) at Texas A&M University-Kingsville (TAMUK) for funding and student support respectfully. The Microscopy and Imaging Center (MIC) at TAMU and the Department of Chemistry at TAMUK are also duly acknowledged for their technical support and nanostructure characterization. The Welch Foundation (AC-006) is further acknowledged in providing financial support to graduate students in their studies. Dr. Bashir would also like to acknowledge Dr. Wigle for access to the Triservice Laboratory (Fort Sam Houston, Air Force, EPA-07-029-HE-00-EPA) and assistance with in vitro cell assays. The Materials Characterization Facility and Microscopy Imaging Center, TAMU, and technical support from TAMUK were acknowledged; Dr. Ying-Pin Chen from Zhou’s group, Chemistry Department, TAMU, is duly acknowledged for her assistance with XRD and SEM data collection and analyses; and Drs. H. Kim and Wilson Serem, Texas A&M University, for assistance with other analyses are also acknowledged.
References
- 1.R. G. Newell, Y. Qian, D. Raimi, Global energy outlook 2015 (No. w22075). National Bureau of Economic Research. (2016), http://www.nber.org/papers/w22075
- 2.S. Dale, The BP statistical review of the world (2016), https://www.bp.com/content/dam/bp/pdf/energy-economics/statistical-review-2016/bp-statistical-review-of-world-energy-2016-full-report.pdf
- 3.I. Chapman, The end of peak oil? Why this topic is still relevant despite recent denials. Energ. Policy 64, 93–101 (2014)CrossRefGoogle Scholar
- 4.N. Bauer, I. Mouratiadou, G. Luderer, L. Baumstark, R.J. Brecha, O. Edenhofer, E. Kriegler, Global fossil energy markets and climate change mitigation–an analysis with REMIND. Clim. Chang. 136(1), 69–82 (2016)CrossRefGoogle Scholar
- 5.C. Li, H. Shi, Y. Cao, J. Wang, Y. Kuang, Y. Tan, J. Wei, A comprehensive review of renewable energy curtailment and avoidance: a specific example in China. Renew. Sust. Energ. Rev. 41, 1067–1079 (2015)CrossRefGoogle Scholar
- 6.
- 7.A. Cherp, J. Jewell, V. Vinichenko, N. Bauer, E. De Cian, Global energy security under different climate policies, GDP growth rates, and fossil resource availabilities. Clim. Chang. 136(1), 83–94 (2016)CrossRefGoogle Scholar
- 8.V. Court, F. Fizaine, Long-term estimates of the Energy-Return-on-Investment (EROI) of coal, oil, and gas global productions. Ecol. Econ. 138, 145–159 (2017)CrossRefGoogle Scholar
- 9.S.M. Chin, H.L. Hwang, D. Davidson, Shared Freight Transportation and Energy Commodities Phase One: Coal, Crude Petroleum, and Natural Gas Flows (No. ORNL/TM-2016/303) (Oak Ridge National Laboratory (ORNL), Oak Ridge, 2016), https://info.ornl.gov/sites/publications/Files/Pub68388.pdf
- 10.D.L. McCollum, J. Jewell, V. Krey, M. Bazilian, M. Fay, K. Riahi, Quantifying uncertainties influencing the long-term impacts of oil prices on energy markets and carbon emissions. Nat. Energy 1, e16077 (18 pages) (2016), https://www.nature.com/articles/nenergy201677
- 11.Y. Niki, D. H. Yoo, K. Hirata, H. Sekiguchi, Effects of Ammonia Gas Mixed Into Intake Air on Combustion and Emissions Characteristics in Diesel Engine. In ASME 2016 Internal Combustion Engine Fall Technical Conference (pp. V001T03A004-V001T03A004). (American Society of Mechanical Engineers, 2016), http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=2589990
- 12.A. Karvountzis-Kontakiotis, A. Dimaratos, L. Ntziachristos, Z. Samaras, Exploring the stochastic and deterministic aspects of cyclic emission variability on a high-speed spark-ignition engine. Energy 118, 68–76 (2017)CrossRefGoogle Scholar
- 13.M.K. Balki, C. Sayin, M. Canakci, The effect of different alcohol fuels on the performance, emission and combustion characteristics of a gasoline engine. Fuel 115, 901–906 (2014)CrossRefGoogle Scholar
- 14.O. Popovicheva, G. Engling, K.T. Lin, N. Persiantseva, M. Timofeev, E. Kireeva, G. Wachtmeister, Diesel/biofuel exhaust particles from modern internal combustion engines: microstructure, composition, and hygroscopicity. Fuel 157, 232–239 (2015)CrossRefGoogle Scholar
- 15.E. Mattarelli, C.A. Rinaldini, V.I. Golovitchev, CFD-3D analysis of a light duty dual fuel (diesel/natural gas) combustion engine. Energy Procedia 45, 929–937 (2014)CrossRefGoogle Scholar
- 16.J.J. Schauer, Design criteria for future fuels and related power systems addressing the impacts of non-CO2 pollutants on human health and climate change. Ann. Rev. Chem. Biomol. Eng. 6, 101–120 (2015)CrossRefGoogle Scholar
- 17.J.L. Vieira, G.V. Guimaraes, P.A. de Andre, F.D. Cruz, P.H.N. Saldiva, E.A. Bocchi, The respiratory filter reduces the cardiovascular effects associated with diesel exhaust exposure: a randomized, prospective, double-blind, controlled study of heart failure: the FILTER-HF trial. JACC Heart Fail. 4(1), 55–64 (2016)CrossRefGoogle Scholar
- 18.K. Berhane, Y. Zhang, M.T. Salam, S.P. Eckel, W.S. Linn, E.B. Rappaport, F.D. Gilliland, Longitudinal effects of air pollution on exhaled nitric oxide: the children’s health study. Occup. Environ. Med. 71(7), 507–513 (2014)CrossRefGoogle Scholar
- 19.F. Christodoulou, A. Megaritis, Experimental investigation of the effects of simultaneous hydrogen and nitrogen addition on the emissions and combustion of a diesel engine. Int. J. Hydrog. Energy 39(6), 2692–2702 (2014)CrossRefGoogle Scholar
- 20.M. Tinajero-Trejo, K.J. Denby, S.E. Sedelnikova, S.A. Hassoubah, B.E. Mann, R.K. Poole, Carbon monoxide-releasing Molecule-3 (CORM-3; Ru (CO) 3Cl (Glycinate)) as a tool to study the concerted effects of carbon monoxide and nitric oxide on bacterial Flavohemoglobin Hmp applications and pitfalls. J. Biol. Chem. 289(43), 29471–29482 (2014)CrossRefGoogle Scholar
- 21.K.H. Kim, S.A. Jahan, E. Kabir, R.J. Brown, A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ. Int. 60, 71–80 (2013)CrossRefGoogle Scholar
- 22.L.B. Braga, J.L. Silveira, M.E. da Silva, E.B. Machin, D.T. Pedroso, C.E. Tuna, Comparative analysis of a PEM fuel cell and an internal combustion engine driving an electricity generator: technical, economical and ecological aspects. Appl. Therm. Eng. 63(1), 354–361 (2014)CrossRefGoogle Scholar
- 23.L.E. Arteaga-Pérez, Y. Casas-Ledón, W. Prins, L. Radovic, Thermodynamic predictions of performance of a bagasse integrated gasification combined cycle under quasi-equilibrium conditions. Chem. Eng. J 258, 402–411 (2014)CrossRefGoogle Scholar
- 24.S. Verhelst, Recent progress in the use of hydrogen as a fuel for internal combustion engines. Int. J. Hydrog. Energy 39(2), 1071–1085 (2014)CrossRefGoogle Scholar
- 25.M.K. Debe, Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486(7401), 43-1–43-10 (2012), http://search.proquest.com/openview/4fdc575f0c9c5af4ce49a704ba2995b0/1?pq-origsite=gscholar&cbl=40569
- 26.H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner, Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B Environ. 56(1), 9–35 (2005)CrossRefGoogle Scholar
- 27.Y. Yuan, J. Smith, G. Goenaga, D.J. Liu, B. Zhou, J. Liu, Performance improvement of fuel cells using platinum-functionalised aligned carbon nanotubes. J. Exp. Nanosci. 8(6), 797–807 (2013)CrossRefGoogle Scholar
- 28.J. Liu, Y. Yuan, S. Bashir, Functionalization of aligned carbon nanotubes to enhance the performance of fuel cell. Energies 6(12), 6476–6486 (2013)CrossRefGoogle Scholar
- 29.K. Suárez-Alcántara, O. Solorza-Feria, Kinetics and PEMFC performance of Ru x Mo y Se z nanoparticles as a cathode catalyst. Electrochim. Acta 53(15), 4981–4989 (2008)CrossRefGoogle Scholar
- 30.L.G.S. Pereira, F.R. dos Santos, M.E. Pereira, V.A. Paganin, E.A. Ticianelli, CO tolerance effects of tungsten-based PEMFC anodes. Electrochim. Acta 51(19), 4061–4066 (2006)CrossRefGoogle Scholar
- 31.J. Parrondo, F. Mijangos, B. Rambabu, Platinum/tin oxide/carbon cathode catalyst for high-temperature PEM fuel cell. J. Power Sources 195(13), 3977–3983 (2010)CrossRefGoogle Scholar
- 32.B.P. Vinayan, R. Nagar, N. Rajalakshmi, S. Ramaprabhu, Novel platinum–cobalt alloy nanoparticles dispersed on nitrogen-doped graphene as a cathode electrocatalyst for PEMFC applications. Adv. Funct. Mater. 22(16), 3519–3526 (2012)CrossRefGoogle Scholar
- 33.E. Slavcheva, I. Radev, S. Bliznakov, G. Topalov, P. Andreev, E. Budevski, Sputtered iridium oxide films as electrocatalysts for water splitting via PEM electrolysis. Electrochim. Acta 52(12), 3889–3894 (2007)CrossRefGoogle Scholar
- 34.I. Roche, E. Chaînet, M. Chatenet, J. Vondrák, Carbon-supported manganese oxide nanoparticles as electrocatalysts for the oxygen reduction reaction (ORR) in alkaline medium: physical characterizations and ORR mechanism. J. Phys. Chem. C 111(3), 1434–1443 (2007)CrossRefGoogle Scholar
- 35.A. Serov, C. Kwak, Review of non-platinum anode catalysts for DMFC and PEMFC application. Appl. Catal. B Environ. 90(3), 313–320 (2009)CrossRefGoogle Scholar
- 36.L. Dai, Y. Xue, L. Qu, H.J. Choi, J.B. Baek, Metal-free catalysts for oxygen reduction reaction. Chem. Rev. 115(11), 4823–4892 (2015)CrossRefGoogle Scholar
- 37.Y. Jiao, Y. Zheng, M. Jaroniec, S.Z. Qiao, Design of electrocatalysts for oxygen-and hydrogen-involving energy conversion reactions. Chem. Soc. Rev 44(8), 2060–2086 (2015)CrossRefGoogle Scholar
- 38.H. Liu, C. Song, L. Zhang, J. Zhang, H. Wang, D.P. Wilkinson, A review of anode catalysis in the direct methanol fuel cell. J. Power Sources 155(2), 95–110 (2006)CrossRefGoogle Scholar
- 39.R. Bashyam, P. Zelenay, A class of non-precious metal composite catalysts for fuel cells. Nature 443(7107), 63–66 (2006)CrossRefGoogle Scholar
- 40.C.T. Hsieh, J.Y. Lin, Fabrication of bimetallic Pt–M (M= Fe, Co, and Ni) nanoparticle/carbon nanotube electrocatalysts for direct methanol fuel cells. J. Power Sources 188(2), 347–352 (2009)CrossRefGoogle Scholar
- 41.S.Y. Huang, P. Ganesan, S. Park, B.N. Popov, Development of a titanium dioxide supported platinum catalyst with ultrahigh stability for polymer electrolyte membrane fuel cell applications. J. Am. Chem. Soc. 131(39), 13898–13899 (2009)CrossRefGoogle Scholar
- 42.E.P. Murray, T. Tsai, S.A. Barnett, A direct- methane fuel cell with a ceria-based anode. Nature 400(6745), 649-1–649-4 (1999), https://www.nature.com/nature/journal/v400/n6745/pdf/400649a0.pdf?origin=ppub CrossRefGoogle Scholar
- 43.J. Graetz, New approaches to hydrogen storage. Chem. Soc. Rev. 38(1), 73–82 (2009)CrossRefGoogle Scholar
- 44.D.R. Palo, R.A. Dagle, J.D. Holladay, Methanol steam reforming for hydrogen production. Chem. Rev. 107(10), 3992–4021 (2007)CrossRefGoogle Scholar
- 45.K. Vasudeva, N. Mitra, P. Umasankar, S.C. Dhingra, Steam reforming of ethanol for hydrogen production: thermodynamic analysis. Int. J. Hydrog. Energy 21(1), 13–18 (1996)CrossRefGoogle Scholar
- 46.J.A. Turner, Sustainable hydrogen production. Science 305(5686), 972–974 (2004)CrossRefGoogle Scholar
- 47.T.R. Tephly, The toxicity of methanol. Life Sci. 48(11), 1031–1041 (1991)CrossRefGoogle Scholar
- 48.B.K. Nelson, W.S. Brightwell, D.R. MacKenzie, A. Khan, J.R. Burg, W.W. Weigel, P.T. Goad, Teratological assessment of methanol and ethanol at high inhalation levels in rats. Fundam. Appl. Toxicol. 5(4), 727–736 (1985)CrossRefGoogle Scholar
- 49.A. Demirbas, Progress and recent trends in biofuels. Prog. Energy Combust. Sci. 33(1), 1–18 (2007)CrossRefGoogle Scholar
- 50.A.L. Dicks, Hydrogen generation from natural gas for the fuel cell systems of tomorrow. J. Power Sources 61(1–2), 113–124 (1996)CrossRefGoogle Scholar
- 51.J. Zhang, W. Peng, Z. Chen, H. Chen, L. Han, Effect of cerium doping in the TiO2 photoanode on the electron transport of dye-sensitized solar cells. J. Phys. Chem. C 116(36), 19182–19190 (2012)CrossRefGoogle Scholar
- 52.K. Eguchi, T. Setoguchi, T. Inoue, H. Arai, Electrical properties of ceria-based oxides and their application to solid oxide fuel cells. Solid State Ionics 52(1–3), 165–172 (1992)CrossRefGoogle Scholar
- 53.T.J. Brunner, P. Wick, P. Manser, P. Spohn, R.N. Grass, L.K. Limbach, W.J. Stark, In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ. Sci. Technol. 40(14), 4374–4381 (2006)CrossRefGoogle Scholar
- 54.Choudhary, B. K. (1980). Bandyopadhyay. Important of mineral content and medicinal properties of Moringa oleifera and Hygrophila auriculata. Sachitra Ayurved, 50(7), 543–549Google Scholar
- 55.A.K. Dash, G.K. Dutta, K.K. Sardar, G. Sahoo, The ethnomedicinal importance of Hygrophila spinosa T. Anders: a review. Plant Arch. 12(1), 5–9 (2012)Google Scholar
- 56.S. Ahmed, A. Rahman, M. Mathur, M. Athar, S. Sultana, Anti-tumor promoting activity of Asteracantha long folio against experimental hepatocarcinogenesis in rats. Food Chem. Toxicol. 39(1), 19–28 (2001)CrossRefGoogle Scholar
- 57.M.S. Hussain, S. Fareed, M. Ali, Hyphenated chromatographic analysis of bioactive gallic acid and quercetin in Hygrophila auriculata (K. Schum) Heine growing wildly in marshy places in India by validated HPTLC method. Asian Pac. J. Trop. Biomed. 2(2), S477–S483 (2012)CrossRefGoogle Scholar
- 58.N. Singh, G.J. Jenkins, R. Asadi, S.H. Doak, Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Rev. Exp. 1(5358), 1–15 (2010), http://www.tandfonline.com/doi/pdf/10.3402/nano.v1i0.5358 CrossRefGoogle Scholar
- 59.S.J. Soenen, M. De Cuyper, Assessing iron oxide nanoparticle toxicity in vitro: current status and future prospects. Nanomedicine 5(8), 1261–1275 (2010)CrossRefGoogle Scholar
- 60.N. Kaushik, Saponins of Chlorophytum species. Phytochem. Rev. 4(2), 191–196 (2005)CrossRefGoogle Scholar
- 61.M.A. Lacaille-Dubois, Bioactive saponins with cancer related and immunomodulatory activity: recent developments. Stud. Nat. Prod. Chem. 32, 209–246 (2005)CrossRefGoogle Scholar
- 62.H. Meng, Z. Zhang, F. Zhao, T. Qiu, J. Yang, Orthogonal optimization design for the preparation of Fe 3 O 4 nanoparticles via chemical coprecipitation. Appl. Surf. Sci. 280, 679–685 (2013)CrossRefGoogle Scholar
- 63.Q.A. Pankhurst, J. Connolly, S.K. Jones, J.J. Dobson, Applications of magnetic nanoparticles in biomedicine. J. Phys. D. Appl. Phys. 36(13), R167-1–R167-16 (2003), https://isis.ku.dk/kurser/blob.aspx?feltid=20160
- 64.W. Kai, X. Xiaojun, P. Ximing, H. Zhenqing, Z. Qiqing, Cytotoxic effects and the mechanism of three types of magnetic nanoparticles on human hepatoma BEL-7402 cells. Nanoscale Res. Lett. 6(1), 480-1–48-10 (2011), https://link.springer.com/article/10.1186/1556-276X-6-480 CrossRefGoogle Scholar
- 65.A.G. Bodnar, M. Ouellette, M. Frolkis, S.E. Holt, C.P. Chiu, G.B. Morin, W.E. Wright, Extension of life-span by introduction of telomerase into normal human cells. Science 279(5349), 349–352 (1998)CrossRefGoogle Scholar
- 66.H. Wang, J.A. Joseph, Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic. Biol. Med. 27(5), 612–616 (1999)CrossRefGoogle Scholar
- 67.M. Gotić, S. Musić, Mössbauer, FT-IR and FE-SEM investigation of iron oxides precipitated from FeSO4 solutions. J. Mol. Struct. 834, 445–453 (2007)CrossRefGoogle Scholar
- 68.M. Sundrarajan, M. Ramalakshmi, Novel cubic magnetite nanoparticle synthesis using room temperature ionic liquid. J. Chem. 9(3), 1070–1076 (2012)Google Scholar
- 69.O.M. Lemine, K. Omri, B. Zhang, L. El Mir, M. Sajieddine, A. Alyamani, M. Bououdina, Sol–gel synthesis of 8nm magnetite (Fe3O4) nanoparticles and their magnetic properties. Superlattice. Microst. 52(4), 793–799 (2012)CrossRefGoogle Scholar
- 70.H. Wang, T.B. Shrestha, M.T. Basel, R.K. Dani, G.M. Seo, S. Balivada, D. Moore, Magnetic-Fe/Fe3O4 − nanoparticle-bound SN38 as a carboxylesterase-cleavable prodrug for the delivery to tumors within monocytes/macrophages. Beilstein J. Nanotechnol. 3(1), 444–455 (2012)CrossRefGoogle Scholar
- 71.S.A. Kulkarni, P.S. Sawadh, P.K. Palei, K.K. Kokate, Effect of synthesis route on the structural, optical and magnetic properties of Fe3O4 nanoparticles. Ceram. Int. 40(1), 1945–1949 (2014)CrossRefGoogle Scholar
- 72.D. Yoo, J.H. Lee, T.H. Shin, J. Cheon, Theranostic magnetic nanoparticles. Acc. Chem. Res. 44(10), 863–874 (2011)CrossRefGoogle Scholar
- 73.J.T. Nurmi, P.G. Tratnyek, V. Sarathy, D.R. Baer, J.E. Amonette, K. Pecher, M.D. Driessen, Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics. Environ. Sci. Technol. 39(5), 1221–1230 (2005)CrossRefGoogle Scholar
- 74.M. Auffan, J. Rose, M.R. Wiesner, J.Y. Bottero, Chemical stability of metallic nanoparticles: a parameter controlling their potential cellular toxicity in vitro. Environ. Pollut. 157(4), 1127–1133 (2009)CrossRefGoogle Scholar
- 75.H. Markides, M. Rotherham, A.J. El Haj, Biocompatibility and toxicity of magnetic nanoparticles in regenerative medicine. J. Nanomater. 2012, 13-1–13-11 (2012), http://dl.acm.org/citation.cfm?id=2437971
- 76.C. Xu, M.S. Inokuma, J. Denham, K. Golds, P. Kundu, J.D. Gold, M.K. Carpenter, The feeder-free growth of undifferentiated human embryonic stem cells. Nat. Biotechnol. 19(10), 971-1–971-5 (2001), http://search.proquest.com/openview/487240db7cd50ece7301a88928509889/1?pq-origsite=gscholar&cbl=47191
- 77.C.J. Ku, W. Karunarathne, S. Kenyon, P. Root, D. Spence, Fluorescence determination of nitric oxide production in stimulated and activated platelets. Anal. Chem. 79(6), 2421–2426 (2007)CrossRefGoogle Scholar
- 78.K.M. Lee, K.H. Choi, M.M. Ouellette, Use of exogenous hTERT to immortalize primary human cells. Cytotechnology 45(1), 33–38 (2004)CrossRefGoogle Scholar
- 79.H. Matsunaga, J.T. Handa, A. Aotaki-Keen, S.W. Sherwood, M.D. West, L.M. Hjelmeland, Beta-galactosidase histochemistry and telomere loss in senescent retinal pigment epithelial cells. Invest. Ophthalmol. Vis. Sci. 40(1), 197–202 (1999)Google Scholar
- 80.S. Naqvi, M. Samim, M.Z. Abdin, F.J. Ahmed, A.N. Maitra, C.K. Prashant, A.K. Dinda, Concentration- dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress. Int. J. Nanomedicine 5, 983-1–983-7 (2010), https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3010160/pdf/ijn-5-983.pdf
- 81.C. Cheng, K.H. Müller, K.K. Koziol, J.N. Skepper, P.A. Midgley, M.E. Welland, A.E. Porter, Toxicity and imaging of multi-walled carbon nanotubes in human macrophage cells. Biomaterials 30(25), 4152–4160 (2009)CrossRefGoogle Scholar
- 82.M. Finkbeiner, A. Inaba, R. Tan, K. Christiansen, H.J. Klüppel, The new international standards for life cycle assessment: ISO 14040 and ISO 14044. Int J Life Cycle Assess 11(2), 80–85 (2006)CrossRefGoogle Scholar
- 83.D.J. Briggs, A framework for integrated environmental health impact assessment of systemic risks. Environ. Health 7(1), 61 (2008)Google Scholar
- 84.S. Ross, D. Evans, Use of life cycle assessment in environmental management. Environ. Manage 29(1), 132–142 (2002)CrossRefGoogle Scholar
- 85.S. Foss Hansen, B.H. Larsen, S.I. Olsen, A. Baun, Categorization framework to aid hazard identification of nanomaterials. Nanotoxicology, 1(3), 243–250 (2007)CrossRefGoogle Scholar
- 86.I. Linkov, T.P. Seager, Coupling multi-criteria decision analysis, life-cycle assessment, and risk assessment for emerging threats (2011)CrossRefGoogle Scholar
- 87.S.J. Cowell, R. Fairman, R.E. Lofstedt, Use of risk assessment and life cycle assessment in decision making: a common policy research agenda. Risk Anal 22(5), 879–894 (2002)CrossRefGoogle Scholar
- 88.ECHA (European Chemicals Agency), 2010 Guidance on information requirements and chemical safety assessment. Chapter R.16: environmental exposure estimation. 2, (2010)Google Scholar