Influence of Air Impurities on the Performance of Nanostructured PEMFC Catalysts

  • Olga A. Baturina
  • Boris Dyatkin
  • Tatyana V. ReshetenkoEmail author


This chapter provides an overview of proton exchange membrane fuel cell (PEMFC) performance issues that stem from exposure to airborne pollutants. The PEMFCs must adapt to various functional environments and operate within well-established air quality thresholds in order to become commercially viable. Ambient air is the most convenient oxidant for PEMFCs; however, it may contain various contaminants that can cause significant performance loss in these energy conversion systems. The discussion focuses on the effects of organic and inorganic impurities on nanostructured electrocatalysts, such as Pt and novel material alternatives. This chapter compares different contamination mechanisms, electrochemically driven impurity evolution and transformation on catalyst nanoparticles, and the effects of these processes on the oxygen reduction reaction and PEMFCs’ subsequent performance. Finally, the chapter highlights possible PEMFC performance recovery and contaminant mitigation strategies. The discussion presents an overview of the experimental and computational approaches and efforts to reconcile observed performance with phenomenological modeling.


PEMFC Airborne contaminants Oxygen reduction reaction Nanostructured catalyst Pt catalysts PGM-free catalysts 



This work is supported by the Office of Naval Research (N00014-12-1-0496) and the Department of Energy (DE-EE0000467). B. Dyatkin (B.D.) is supported by the National Research Council (NRC) Research Associateship Program (RAP). The authors also gratefully acknowledge the helpful comments and suggestions of the reviewers. The authors thank the editors for allowing us to review our previously published papers [8, 9, 11, 12, 13, 30, 75, 76, 78].


  1. 1.
    R.R. Adzic, J. Zhang, K. Sasaki, M.B. Vukmirovic, M. Shao, J.X. Wang, A.U. Nilekar, M. Mavrikakis, J.A. Valerio, F. Uribe, Platinum monolayer fuel cell electrocatalysts. Top. Catal. 46, 249–262 (2007)Google Scholar
  2. 2.
    I. Alstrup, A new model explaining carbon filament growth on nickel, iron, and Ni-Cu alloy catalysts. J. Catal. 109, 241–251 (1988)Google Scholar
  3. 3.
    M. Angelo, J. St-Pierre, The effect of common airborne impurities and mixtures on PEMFC performance and durability. ECS Trans. 64, 773–788 (2014)Google Scholar
  4. 4.
    H. Angerstein-Kozlowska, B. Macdougall, B.E. Conway, Electrochemisorption and reactivity of nitriles at platinum electrodes and the anodic H desorption effect. J. Electroanal. Chem. 39, 287–313 (1972)Google Scholar
  5. 5.
    L.B. Avdeeva, O.V. Goncharova, D.I. Kochubey, V.I. Zaikovskii, L.M. Plyasova, B.N. Novgorodov, S.K. Shaikhutdinov, Coprecipitated Ni-alumina and Ni-Cu-alumina catalysts of methane decomposition and carbon deposition. II. Evolution of the catalysts in reaction. Appl. Catal. A. 114, 117–129 (1996)Google Scholar
  6. 6.
    I.T. Bae, D.A. Scherson, In situ X-ray absorption of a carbon monoxide-iron porphyrin adduct adsorbed on high-area carbon in an aqueous electrolyte. J. Phys. Chem. B 102, 2519–2522 (1998)Google Scholar
  7. 7.
    V.S. Bagotzky, Y.B. Vassilyev, J. Weber, J.N. Pirtskha, Adsorption of anions on smooth platinum electrodes. J. Electroanal. Chem. 27, 31–46 (1970)Google Scholar
  8. 8.
    O.A. Baturina, A. Epshteyn, P. Northrup, K.E. Swider-Lyons, The influence of cell voltage on the performance of a PEM fuel cell in the presence of HCl in the air. J. Electrochem. Soc. 161, F365–F372 (2014)Google Scholar
  9. 9.
    O.A. Baturina, A. Epshteyn, P.A. Northrup, K.E. Swider-Lyons, Insights into PEMFC performance degradation from HCl in the air. J. Electrochem. Soc. 158, B1198–B1205 (2011a)Google Scholar
  10. 10.
    O.A. Baturina, Y. Garsany, B.D. Gould, K.E. Swider-Lyons, Contaminant-induced degradation, in PEM Fuel Cell Failure Mode Analysis, ed. by H. Wang, H. Li, X. Z. Yuan (CRC Press, New York, 2012)Google Scholar
  11. 11.
    O.A. Baturina, B.D. Gould, Y. Garsany, K.E. Swider-Lyons, Insights on the SO2 poisoning of Pt3Co/VC and Pt/VC fuel cell catalysts. Electrochim. Acta 55, 6676–6686 (2010)Google Scholar
  12. 12.
    O.A. Baturina, B.D. Gould, A. Korovina, Y. Garsany, R. Stroman, P.A. Northrup, Products of SO2 adsorption on fuel cell electrocatalysts by a combination of sulfur K-edge XANES and electrochemistry. Langmuir 27, 14930–14939 (2011b)Google Scholar
  13. 13.
    O.A. Baturina, B.D. Gould, P.A. Northrup, K.E. Swider-Lyons, SO2 adsorption products on Pt nanoparticles as a function of electrode potential and oxidative properties of carrier gas: in situ sulfur K-edge XANES approach. Catal. Today 205, 106–110 (2013)Google Scholar
  14. 14.
    W. Bi, T.F. Fuller, Modeling of PEM fuel cell Pt/C catalyst degradation. J. Power Sources 178, 188–196 (2008)Google Scholar
  15. 15.
    L. Birry, J.H. Zagal, J.P. Dodelet, Does CO poison Fe-based catalysts for ORR? Electrochem. Commun. 12, 628–631 (2010)Google Scholar
  16. 16.
    F.N. Büchi, M. Inaba, T.J. Schmidt, Polymer Electrolyte Fuel Cell Durability (Springer, New York, 2009)Google Scholar
  17. 17.
    M. Busch, A. Kompch, S. Suleiman, C. Notthoff, U. Bergmann, R. Theissmann, B. Atakan, M. Winterer, NOx conversion properties of a novel material: iron nanoparticles stabilized in carbon. Appl. Catal. B. 166–167, 211–216 (2015)Google Scholar
  18. 18.
    M.A. Butler, G. Burr, D. Dankovic, R.A. Lunsford, A. Miller, M. Nguyen, L. Olsen, D. Sharpnack, J. Snawder, L. Stayner, Hazard review: health effects of occupational exposure to asphalt (U.S. Department of Health and Human Services, Public Health Service Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, December 2000)Google Scholar
  19. 19.
    Z. Chen, D. Higgins, H.S. Tao, R.S. Hsu, Z.W. Chen, Highly active nitrogen-doped carbon nanotubes for oxygen reduction reaction in fuel cell applications. J. Phys. Chem. C 113, 21008–21013 (2009)Google Scholar
  20. 20.
    H.-S. Cho, J.W. Van Zee, An isothermal model for predicting performance loss in PEMFCs from the balance of plant leachates. J. Electrochem. Soc. 161, F1375–F1388 (2014)Google Scholar
  21. 21.
    J.P. Collman, X.M. Zhang, P.C. Herrmann, E.S. Uffelman, B. Boitrel, A. Straumanis, J.I. Brauman, Congruent multiple Michael addition for the synthesis of biomimetic heme analogs. J. Am. Chem. Soc. 116, 2681–2682 (1994)Google Scholar
  22. 22.
    B.E. Conway, Y. Phillips, S.Y. Qian, Surface electrochemistry and kinetics of anodic bromine formation at platinum. J. Chem. Soc. Faraday Trans. 91, 283–293 (1995)Google Scholar
  23. 23.
    R.M. Darling, J.P. Meyers, Kinetic model of platinum dissolution in PEMFCs. J. Electrochem. Soc. 150, A1523–A1527 (2003)Google Scholar
  24. 24.
    D.H. Deng, L. Yu, X.Q. Chen, G.X. Wang, L. Jin, X.L. Pan, J. Deng, G.Q. Sun, X.H. Bao, Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction. Angew. Chem. Int. Ed. 52, 371–375 (2013)Google Scholar
  25. 25.
    M.S. El-Deab, F. Kitamura, T. Ohsaka, Impact of acrylonitrile poisoning on oxygen reduction reaction at Pt/C catalysts. J. Power Sources 229, 65–71 (2013)Google Scholar
  26. 26.
    S. Elliott, F.S. Rowland, Methyl halide hydrolysis rates in natural waters. J. Atmos. Chem. 20, 229–236 (1995)Google Scholar
  27. 27.
    A.A. Franco, B. Barthe, L. Rouillon, O. Lemaire, Mechanistic investigations of NO2 impact on ORR in PEM fuel cells: a coupled experimental and multiscale modeling approach. ECS Trans. 25, 1595–1604 (2009)Google Scholar
  28. 28.
    N. Garcia-Araez, V.C. Climent, E. Herrero, J.M. Feliu, On the electrochemical behavior of the Pt (100) vicinal surfaces in bromide solutions. Surf. Sci. 560, 269–284 (2004)Google Scholar
  29. 29.
    Y. Garsany, O.A. Baturina, K.E. Swider-Lyons, Impact of sulfur dioxide on the oxygen reduction reaction at Pt/Vulcan carbon electrocatalysts. J. Electrochem. Soc. 154, B670–B675 (2007)Google Scholar
  30. 30.
    Y. Garsany, O.A. Baturina, K.E. Swider-Lyons, Oxygen reduction reaction kinetics of SO-contaminated Pt2Co and Pt/Vulcan carbon electrocatalysts. J. Electrochem. Soc. 156, B848–B855 (2009)Google Scholar
  31. 31.
    F.H. Garszon, F.A. Uribe, Effects of contaminants of catalyst activity, in Handbook of Fuel Cells – Fundamentals, Technology, and Applications, ed. by W. Vielstich, H. A. Gasteiger, A. Lamm (Wiley, Wenheim, 2010)Google Scholar
  32. 32.
    H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner, Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B. 56, 9–35 (2005)Google Scholar
  33. 33.
    H.A. Gasteiger, N.M. Markovic, P.N. Ross, Bromide adsorption on Pt(111): adsorption isotherm and electrosorption valency deduced from RRD(Pt(111))E measurements. Langmuir 12, 1414–1418 (1996)Google Scholar
  34. 34.
    S. Gilman, D. Chu, Methanol effects on the O2 reduction reaction, in Handbook of Fuel Cells – Fundamentals, Technology, and Applications, ed. by W. Vielstich, H. A. Gasteiger, A. Lamm, H. Yokokawa (Wiley, Wenheim, 2010)Google Scholar
  35. 35.
    R.N. Goldberg, L.G. Hepler, Thermochemistry and oxidation potentials of the platinum group metals and their compounds. Chem. Rev. 68, 229–252 (1968)Google Scholar
  36. 36.
    K.P. Gong, F. Du, Z.H. Xia, M. Durstock, L.M. Dai, Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323, 760–764 (2009)Google Scholar
  37. 37.
    B.D. Gould, O.A. Baturina, K.E. Swider-Lyons, Deactivation of Pt/VC proton exchange membrane fuel cell cathodes by SO2, H2S, and COS. J. Power Sources 188, 89–95 (2009)Google Scholar
  38. 38.
    S. Gupta, C. Fierro, E. Yeager, The effects of cyanide on the electrochemical properties of transition metal macrocycles for oxygen reduction in alkaline solutions. J. Electroanal. Chem. 306, 239–250 (1991)Google Scholar
  39. 39.
    R. Halseid, P.J.S. Vie, R. Tunold, Influence of ammonium on conductivity and water content of Nafion 117 membranes. J. Electrochem. Soc. 151, A381–A388 (2004)Google Scholar
  40. 40.
    D.C. Higgins, J. Wu, W. Li, Z. Chen, Cyanamide derived thin film on carbon nanotubes as metal free oxygen reduction reaction electrocatalyst. Electrochim. Acta 59, 8–13 (2012)Google Scholar
  41. 41.
    E.F. Holby, D. Morgan, Application of Pt nanoparticle dissolution and oxidation modeling to understanding degradation in PEM fuel cells. J. Electrochem. Soc. 159, B578–B591 (2012)Google Scholar
  42. 42.
    K. Hongsirikarn, J.G. Goodwin Jr., S. Greenway, S. Creager, Influence of ammonia on the conductivity of Nafion membranes. J. Power Sources 195, 30–38 (2010)Google Scholar
  43. 43.
    G. Horányi, E.M. Rizmayer, Formation of ethane during the electroreduction of acetonitrile at a platinized platinum electrode. J. Electroanal. Chem. 113, 305–309 (1980)Google Scholar
  44. 44.
    M. Iwasaki, H. Shinjoh, Analysis of the adsorption state and desorption kinetics of NO2 over Fe–zeolite catalyst by FT-IR and temperature-programmed desorption. Phys. Chem. Chem. Phys. 12, 2365–2372 (2010)Google Scholar
  45. 45.
    T. Jahnke, G. Futter, A. Latz, T. Malkow, G. Papakonstantinou, G. Tsotridis, P. Schott, M. Gérard, M. Quinaud, M. Quiroga, A.A. Franco, K. Malek, F. Calle-Vallejo, R. Ferreira de Morais, T. Kerber, P. Sautet, D. Loffreda, S. Strahl, M. Serra, P. Polverino, C. Pianese, M. Mayur, W.G. Bessler, C. Kompis, Performance and degradation of proton exchange membrane fuel cells: state of the art in modeling from atomistic to system scale. J. Power Sources 304, 207–233 (2016)Google Scholar
  46. 46.
    F. Jaouen, E. Proietti, M. Lefevre, R. Chenitz, J.P. Dodelet, G. Wu, H.T. Chung, C.M. Johnston, P. Zelenay, Recent advances in nonprecious metal catalysts for oxygen-reduction reaction in polymer electrolyte fuel cells. Energy Environ. Sci. 4, 114–130 (2011)Google Scholar
  47. 47.
    R. Jasinski, A new fuel cell cathode catalyst. Nature 201, 1212–1213 (1964)Google Scholar
  48. 48.
    K. Jayasayee, J.A.R. Van Veen, E.J.M. Hensen, F.A. de Bruijn, Influence of chloride ions on the stability of PtNi alloys for PEMFC cathode. Electrochim. Acta 56, 7235–7242 (2011)Google Scholar
  49. 49.
    S. Kian Cheah, O. Sicardy, M. Marinova, L. Guetaz, O. Lemaire, P. Gélin, A.A. Franco, CO impact on the stability properties of PtxCoy nanoparticles in PEM fuel cell anodes: mechanistic insights. J. Electrochem. Soc. 158, B1358–B1367 (2011)Google Scholar
  50. 50.
    V. Komanicky, K.C. Chang, A. Menzel, N.M. Markovic, H. You, X. Wang, D. Myers, Stability and dissolution of platinum surfaces in perchloric acid. J. Electrochem. Soc. 153, B446–B451 (2006)Google Scholar
  51. 51.
    C. Korzeniewski, W. McKenna, S. Pons, An in situ infrared studies of the oxidation of sulfur-dioxide on platinum-electrodes. J. Electrocanal Chem. 235, 361–368 (1987)Google Scholar
  52. 52.
    U.I. Kramm, J. Herranz, N. Larouche, T.M. Arruda, M. Lefevre, F. Jaouen, P. Bogdanoff, S. Fiechter, I. Abs-Wurmbach, S. Mukerjee, J.P. Dodelet, Structure of the catalytic sites in Fe/N/C-catalysts for an O2 reduction in PEM fuel cells. Phys. Chem. Chem. Phys. 14, 11673–11688 (2012)Google Scholar
  53. 53.
    M. Lefevre, E. Proietti, F. Jaouen, J.P. Dodelet, Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 324, 71–74 (2009)Google Scholar
  54. 54.
    H. Li, S. Knights, Z. Shi, J.W. Van Zee, J. Zhang, Proton Exchange Membrane Fuel Cells: Contamination and Mitigation Strategies (CRC Press, New York, 2010a)Google Scholar
  55. 55.
    H. Li, H.J. Wang, W.M. Qian, S.S. Zhang, S. Wessel, T.T.H. Cheng, J. Shen, S.H. Wu, Chloride contamination effects on proton exchange membrane fuel cell performance and durability. J. Power Sources 196, 6249–6255 (2011)Google Scholar
  56. 56.
    W. Li, A. Yu, D.C. Higgins, B.G. Llanos, Z. Chen, Biologically inspired highly durable iron phthalocyanine catalysts for oxygen reduction reaction in polymer electrolyte membrane fuel cells. J. Am. Chem. Soc. 132, 17056–17058 (2010b)Google Scholar
  57. 57.
    Y. Li, K. Moriyama, W. Gu, S. Arisetty, C.Y. Wang, A one-dimensional Pt degradation model for polymer electrolyte fuel cells. J. Electrochem. Soc. 162, F834–F842 (2015)Google Scholar
  58. 58.
    C. Long, Q.F. Li, Y. Li, Y.A. Liu, A.M. Li, Q.X. Zhang, Adsorption characteristics of benzene-chlorobenzene vapor on hyper cross-linked polystyrene adsorbent and a pilot-scale application study. Chem. Eng. J. 160, 723–728 (2010)Google Scholar
  59. 59.
    T. Lopes, J. Chlistunoff, J.-M. Sansiñena, F.H. Garzon, Oxygen reduction reaction on a Pt/carbon fuel cell catalyst in the presence of trace quantities of ammonium ions: an RRDE study. Int. J. Hydrog. Energy 37, 5202–5207 (2012)Google Scholar
  60. 60.
    W. Mabey, T. Mill, Critical-review of hydrolysis of organic compounds in water under environmental conditions. J. Phys. Chem. Ref. Data 7, 383–415 (1978)Google Scholar
  61. 61.
    S. Maldonado, K.J. Stevenson, Influence of nitrogen doping on oxygen reduction electrocatalysis at carbon nanofiber electrodes. J. Phys. Chem. B 109, 4707–4716 (2005)Google Scholar
  62. 62.
    K. Malek, A.A. Franco, Microstructure-based modeling of aging mechanisms in catalyst layers of polymer electrolyte fuel cells. J. Phys. Chem. B 115, 8088–8101 (2011)Google Scholar
  63. 63.
    D. Malko, A. Kucernak, T. Lopes, In situ electrochemical quantification of active sites in Fe–N/C non-precious metal catalysts. Nat. Commun. 7, 13285 (2016)Google Scholar
  64. 64.
    N.M. Markovic, C.A. Lucas, H.A. Gasteiger, P.N. Ross, Bromide adsorption on Pt (100): Rotating ring Pt (100) disk electrode and surface X-ray scattering measurements. Surf. Sci. 365, 229–240 (1996)Google Scholar
  65. 65.
    K. Matsuoka, S. Sakamoto, K. Nakato, A. Hamada, Y. Itoh, Degradation of polymer electrolyte fuel cells under the existence of anion species. J. Power Sources 179, 560–565 (2008)Google Scholar
  66. 66.
    K.J.J. Mayrhofer, B.B. Blizanac, M. Arenz, V.R. Stamenkovic, P.N. Ross, N.M. Markovic, The impact of geometric and surface electronic properties of Pt-catalysts on the particle size effect in electrocatalysis. J. Phys. Chem. B 109, 14433–14440 (2005)Google Scholar
  67. 67.
    B.A.T. Mehrabadi, H.N. Dinh, G. Bender, J.W. Weidner, Effect of system contaminants on the performance of a proton exchange membrane fuel cell. J. Electrochem. Soc. 163, F1527–F1534 (2016)Google Scholar
  68. 68.
    M.S. Mikkola, T. Rockward, F.A. Uribe, B.S. Pivovar, The effect of NaCl in the cathode air stream on PEMFC performance. Fuel Cells 7, 153–158 (2007)Google Scholar
  69. 69.
    S. Morin, B.E. Conway, G.J. Edens, M.J. Weaver, The reactive chemisorption of acetonitrile on Pt (111) and Pt (100) electrodes as examined by in situ infrared spectroscopy. J. Electroanal. Chem. 421, 213–220 (1997)Google Scholar
  70. 70.
    G. Mul, J. Pérez-Ramírez, F. Kapteijn, J.A. Moulijn, NO adsorption on ex-framework [Fe,X]MFI catalysts: novel IR bands and evaluation of assignments. Catal. Lett. 80, 129–138 (2002)Google Scholar
  71. 71.
    T.S. Olson, B. Blizanac, B. Piela, J.R. Davey, P. Zelenay, P. Atanassov, Electrochemical evaluation of porous non-platinum oxygen reduction catalysts for polymer electrolyte fuel cells. Fuel Cells 9, 547–553 (2009)Google Scholar
  72. 72.
    J.M. Orts, R. Gomez, J.M. Feliu, Bromine monolayer adsorption on Pt(110) surfaces. J. Electroanal. Chem. 467, 11–19 (1999)Google Scholar
  73. 73.
    M.R. Rahman, M.I. Awad, F. Kitamura, T. Okajima, T. Ohsaka, A comparative study of ORR at the Pt electrode in ammonium ion-contaminated H2SO4 and HCIO4 solutions. J. Power Sources 220, 65–73 (2012)Google Scholar
  74. 74.
    E.L. Redmond, B.P. Setzler, F.M. Alamgir, T.F. Fuller, Elucidating the oxide growth mechanism on platinum at the cathode in PEM fuel cells. Phys. Chem. Chem. Phys. 16, 5301–5311 (2014)Google Scholar
  75. 75.
    T. Reshetenko, A. Serov, K. Artyushkova, I. Matanovic, S. Stariha, P. Atanassov, Tolerance of non-platinum group metals cathodes proton exchange membrane fuel cells to air contaminants. J. Power Sources 324, 556–571 (2016)Google Scholar
  76. 76.
    T.V. Reshetenko, K. Artyushkova, J. St-Pierre, Spatial proton exchange membrane fuel cell performance under bromomethane poisoning. J. Power Sources 342, 135–147 (2017)Google Scholar
  77. 77.
    T.V. Reshetenko, J. St-Pierre, Study of acetylene poisoning of Pt cathode on proton exchange membrane fuel cell spatial performance using a segmented cell system. J. Power Sources 287, 401–415 (2015a)Google Scholar
  78. 78.
    T.V. Reshetenko, J. St-Pierre, Study of the acetonitrile poisoning of platinum cathodes on proton exchange membrane fuel cell spatial performance using a segmented cell system. J. Power Sources 293, 929–940 (2015b)Google Scholar
  79. 79.
    T.V. Reshetenko, J. St-Pierre, Study of the aromatic hydrocarbons poisoning of platinum cathodes on proton exchange membrane fuel cell spatial performance using a segmented cell system. J. Power Sources 333, 237–246 (2016)Google Scholar
  80. 80.
    S.G. Rinaldo, P. Urchaga, J. Hu, W. Lee, J. Stumper, C. Rice, M. Eikerling, Theoretical analysis of electrochemical surface-area loss in supported nanoparticle catalysts. Phys. Chem. Chem. Phys. 16, 26876–26886 (2014)Google Scholar
  81. 81.
    M. Rivallan, G. Ricchiardi, S. Bordiga, A. Zecchina, Adsorption and reactivity of nitrogen oxides (NO2, NO, N2O) on Fe–zeolites. J. Catal. 264, 104–116 (2009)Google Scholar
  82. 82.
    C. Robin, M. Gerard, A.A. Franco, P. Schott, Multi-scale coupling between two dynamical models for PEMFC aging prediction. Int. J. Hydrog. Energy 38, 4675–4688 (2013)Google Scholar
  83. 83.
    K.I. Rozental, V.I. Veselovskii, Izuchenie mekhanizma i kinetiki reaktsii elektrokhimicheskogo okisleniya metodom anodnoi polyarografii na platinovom elektrode. Zh. Fiz. Khim.+ 27, 1163–1171 (1953)Google Scholar
  84. 84.
    C. Ruzie, P. Even, D. Ricard, T. Roisnel, B. Boitrel, O2 and CO binding to tetraaza-tripodal-capped iron(II) porphyrins. Inorg. Chem. 45, 1338–1348 (2006)Google Scholar
  85. 85.
    G.N. Salaita, D.A. Stern, F. Lu, H. Baltruschat, B.C. Schardt, J.L. Stickney, M.P. Soriaga, D.G. Frank, A.T. Hubbard, Structure and composition of a platinum (111) surface as a function of pH and electrode potential in aqueous bromide solutions. Langmuir 2, 828–835 (1986)Google Scholar
  86. 86.
    T.J. Schmidt, U.A. Paulus, H.A. Gasteiger, R.J. Behm, The oxygen reduction reaction on a Pt/carbon fuel cell catalyst in the presence of chloride anions. J. Electroanal. Chem. 508, 41–47 (2001)Google Scholar
  87. 87.
    H. Schulenburg, B. Schwanitz, N. Linse, G.G. Scherer, A. Wokaun, J. Krbanjevic, R. Grothausmann, I. Manke, 3D imaging of catalyst support corrosion in polymer electrolyte fuel cells. J. Phys. Chem. C 115, 14236–14243 (2011)Google Scholar
  88. 88.
    A. Serov, K. Artyushkova, P. Atanassov, Fe-N-C oxygen reduction fuel cell catalyst derived from carbendazim: synthesis, structure, and reactivity. Adv. Energy Mater. 4, 1301735 (2014)Google Scholar
  89. 89.
    A.A. Shah, K.H. Luo, T.R. Ralph, F.C. Walsh, Recent trends and developments in polymer electrolyte membrane fuel cell modeling. Electrochem. Acta 56, 3731–3757 (2011)Google Scholar
  90. 90.
    Z. Shi, D. Song, H. Li, K. Fatih, Y. Tang, J. Zhang, Z. Wang, S. Wu, Z.-S. Liu, H. Wang, J. Zhang, A general model for air-side proton exchange membrane fuel cell contamination. J. Power Sources 186, 435–445 (2009)Google Scholar
  91. 91.
    D. Singh, I.I. Soykal, J. Tian, D. von Deak, J. King, J.T. Miller, U.S. Ozkan, In situ characterization of the growth of CNx carbon nanostructures as oxygen reduction reaction catalysts. J. Catal. 304, 100–111 (2013)Google Scholar
  92. 92.
    D. Singh, J. Tian, K. Mamtani, J. King, J.T. Miller, U.S. Ozkan, A comparison of N-containing carbon nanostructures (CNx) and N-coordinated iron-carbon catalysts (FeNC) for the oxygen reduction reaction in acidic media. J. Catal. 317, 30–43 (2014a)Google Scholar
  93. 93.
    M.P. Soriaga, A.T. Hubbard, Determination of the orientation of adsorbed molecules at solid-liquid interfaces by thin-layer electrochemistry – aromatic-compounds at platinum-electrodes. J. Am. Chem. Soc. 104, 2735–2742 (1982)Google Scholar
  94. 94.
    I. Srejić, M. Smiljanić, Z. Rakočević, S. Štrbac, Oxygen reduction on polycrystalline Pt and Au electrodes in perchloric acid solution in the presence of acetonitrile. Int. J. Electrochem. Sci. 6, 3344–3354 (2011)Google Scholar
  95. 95.
    J. St-Pierre, PEMFC contamination model: competitive adsorption followed by an electrochemical reaction. J. Electrochem. Soc. 156, B291–B300 (2009)Google Scholar
  96. 96.
    J. St-Pierre, Proton exchange membrane fuel cell contamination model: competitive adsorption followed by a surface segregated electrochemical reaction leading to an irreversibly adsorbed product. J. Power Sources 195, 6379–6388 (2010)Google Scholar
  97. 97.
    J. St-Pierre, PEMFC contaminant tolerance limit – foreign cations in ionomers. Int. J. Hydrog. Energy 36, 5527–5535 (2011a)Google Scholar
  98. 98.
    J. St-Pierre, PEMFC contamination model: neutral species sorption by ionomer. ECS Trans. 41, 307–315 (2011b)Google Scholar
  99. 99.
    J. St-Pierre, N. Jia, R. Rahmani, PEMFC contamination model: competitive adsorption demonstrated with NO2. J. Electrochem. Soc. 155, B315–B320 (2008)Google Scholar
  100. 100.
    J. St-Pierre, Y. Zhai, M.S. Angelo, Effect of selected airborne contaminants on PEMFC performance. J. Electrochem. Soc. 161, F280–F290 (2014)Google Scholar
  101. 101.
    V. Stamenkovic, N.M. Markovic, P.N. Ross, Structure-relationships in electrocatalysis: oxygen reduction and hydrogen oxidation reactions on Pt (111) and Pt (100) in solutions containing chloride ions. J. Electroanal. Chem. 500, 44–51 (2001)Google Scholar
  102. 102.
    V. Stamenkovic, B.S. Mun, K.J.J. Mayrhofer, P.N. Ross, N.M. Markovic, J. Rossmeisl, J. Greeley, J.K. Norskov, Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew. Chem. Int. Ed. 45, 2897–2901 (2006)Google Scholar
  103. 103.
    P. Strasser, S. Koh, T. Anniyev, J. Greeley, K. More, C.F. Yu, Z.C. Liu, S. Kaya, D. Nordlund, H. Ogasawara, M.F. Toney, A. Nilsson, Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts. Nat. Chem. 2, 454–460 (2010)Google Scholar
  104. 104.
    M. Szklarczyk, J. Sobkowski, The behavior of high polar organic solvents at platinum electrode – II. Adsorption and electrode reactions of acetonitrile. Electrochim. Acta 25, 1597–1601 (1980)Google Scholar
  105. 105.
    B. Tavakoli, J.W. Weidner, Effect of contaminants on the performance of a proton exchange membrane fuel cell. ECS Trans. 66, 77–90 (2015)Google Scholar
  106. 106.
    M.S. Thorum, J.M. Hankett, A.A. Gewirth, Poisoning the oxygen reduction reaction on carbon-supported Fe and Cu electrocatalysts: evidence for metal-centered activity. J. Phys. Chem. Lett. 2, 295–298 (2011)Google Scholar
  107. 107.
    D. von Deak, D. Singh, E.J. Biddinger, J.C. King, B. Bayram, J.T. Miller, U.S. Ozkan, Investigation of sulfur poisoning of CNx oxygen reduction catalysts for PEM fuel cells. J. Catal. 285, 145–151 (2012a)Google Scholar
  108. 108.
    D. von Deak, D. Singh, J.C. King, U.S. Ozkan, Use of carbon monoxide and cyanide to probe the active sites on nitrogen-doped carbon catalysts for oxygen reduction. Appl. Catal. B 113–114, 126–133 (2012b)Google Scholar
  109. 109.
    C. Wang, D. Ma, X. Bao, Transformation of biomass into porous graphitic carbon nanostructures by microwave irradiation. J. Phys. Chem. C 112, 17596–17602 (2008)Google Scholar
  110. 110.
    J.X. Wang, N.S. Marinković, R.R. Adžić, Structure of Br adlayers in the course of electrocatalytic reactions O2 reduction of Pt (111) and Au (100). Colloids Surf. A Physicochem. Eng. Asp. 134, 165–171 (1998)Google Scholar
  111. 111.
    Q. Wang, Z.Y. Zhou, Y.J. Lai, Y. You, J.G. Liu, X.L. Wu, E. Terefe, C. Chen, L. Song, M. Rauf, N. Tian, S.G. Sun, Phenylenediamine-based FeNx/C catalyst with high activity for oxygen reduction in acid medium and its active-site probing. J. Am. Chem. Soc. 136, 10882–10885 (2014)Google Scholar
  112. 112.
    G. Wu, K.L. More, C.M. Johnston, P. Zelenay, High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 332, 443–447 (2011a)Google Scholar
  113. 113.
    Q. Wu, G. Mul, R. van de Krol, Efficient NO adsorption and release at Fe3+ sites in Fe/TiO2 nanoparticles. Energy Environ. Sci. 4, 2140–2144 (2011b)Google Scholar
  114. 114.
    Y. Xiao, J. Yuan, B. Sundén, Modeling of micro/mesoscale reactive transport phenomena in catalyst layers of proton exchange membrane fuel cells. Int. J. Low-Carbon Tech. 7, 280–287 (2012)Google Scholar
  115. 115.
    A.P. Yadav, A. Nishikata, T. Tsuru, Effect of halogen ions on platinum dissolution under potential cycling in 0.5 M H2SO4 solution. Electrochim. Acta 52, 7444–7452 (2007)Google Scholar
  116. 116.
    R.T. Yang, J.P. Chen, Mechanism of carbon filament growth on metal catalysts. J. Catal. 115, 52–64 (1989)Google Scholar
  117. 117.
    N. Zamel, X. Li, Effect of contaminants on polymer electrolyte membrane fuel cells. Prog. Energy Combust. Sci. 37, 292–329 (2011)Google Scholar
  118. 118.
    Y. Zhai, G. Bender, S. Dorn, R. Rocheleau, The multi process degradation of PEMFC performance due to sulfur dioxide contamination and its recovery. J. Electrochem. Soc. 157, B20–B26 (2010)Google Scholar
  119. 119.
    Y. Zhai, O. Baturina, D. Rarnaker, E. Farquhar, J. St-Pierre, K. Swider-Lyons, Chlorobenzene poisoning and recovery of platinum-based cathodes in proton exchange membrane fuel cells. J. Phys. Chem. C 119, 20328–20338 (2015)Google Scholar
  120. 120.
    J. Durst, M. Chatenet, F. Maillard, Impact of metal cations on the electrocatalytic properties of Pt/C nanoparticles at multiple phase interfaces. Phys. Chem. Chem. Phys. 14, 13000–13009 (2012)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Olga A. Baturina
    • 1
  • Boris Dyatkin
    • 1
  • Tatyana V. Reshetenko
    • 2
    Email author
  1. 1.Naval Research LaboratoryWashingtonUSA
  2. 2.Hawaii Natural Energy InstituteUniversity of HawaiiHonoluluUSA

Personalised recommendations