• Ernst-Detlef Schulze
  • Erwin Beck
  • Nina Buchmann
  • Stephan Clemens
  • Klaus Müller-Hohenstein
  • Michael Scherer-Lorenzen


This chapter is dedicated to the significance of visible light and ultraviolet (UV)-B radiation for plant life. The dual role of radiation in the visible range as an energy source for photosynthesis, and as a signal for the control of a plant’s development, is the focus of the first part of the chapter. Acclimation to the ever-changing light environment is explained, addressing ultrastructural, physiological and molecular aspects. We discuss light stress caused by overexcitation, the emergence of reactive oxygen species (ROS) and the functioning of ROS-scavenging systems, as well as other protective mechanisms such as non-photochemical quenching. Several photoreceptors (phytochromes, cryptochromes, phototropins), each class specific for a particular range of the visible spectrum and connected to overlapping signal transduction cascades, cooperate in the regulation of growth and other developmental processes of a plant. The second major topic of this chapter is UV-B radiation. Following a discussion of damage caused by UV-B, repair mechanisms and the avoidance of UV-B stress by chemical screening are described. Both UV-B stress responses and developmental processes are triggered by UV-B receptors, whose biochemistry and association with signalling chains are discussed. Finally, the crosstalk between UV-B and visible light responses, which is based on the multifunctionality of regulator proteins, is presented.


  1. Ahn TK, Avenson TJ, Ballottari M, Cheng Y-C, Niyogi KK, Bassi R, Fleming GR (2008) Architecture of a charge-transfer state regulating light harvesting in a plant antenna protein. Science 320:794–797PubMedCrossRefPubMedCentralGoogle Scholar
  2. Anderson JM, Andersson B (1988) The dynamic photosynthetic membrane and regulation of solar energy conversion. Trends Biochem Sci 13:351–355PubMedCrossRefPubMedCentralGoogle Scholar
  3. Barnes JD, Percy KE, Paul ND, Jones P, McLaughlin CK, Mullineaux PM, Creissen G, Wellburn AR (1996) The influence of UV-B radiation on the physicochemical nature of tobacco (Nicotiana tabacum L.) leaf surfaces. J Exp Bot 47:99–109CrossRefGoogle Scholar
  4. Berg JM, Tymoczko JL, Gatto Jr. CJ, Stryer L (2015) Biochemistry, Internatl edn. Springer, Berlin, HeidelbergGoogle Scholar
  5. Björkman O, Demming-Adams B (1994) Regulation of photosynthetic light capture, conversion, and dissipation in leaves of higher plants, Ecol Stud. Springer, Heidelberg, New York; 100:17–47.Google Scholar
  6. Björkman O, Powles SB (1981) Leaf movement in the shade species Oxalis oregana. I. Response to light level and quality. Carnegie Inst Wash Year B 80:59–62Google Scholar
  7. Buchanan BB, Gruissem W, Jones RL (2015) Biochemistry and molecular biology of plants, 2nd edn. Wiley, HobokenGoogle Scholar
  8. Casal JJ (2013) Photoreceptor signaling networks in plant responses to shade. Annu Rev Plant Biol 64:403–427PubMedCrossRefPubMedCentralGoogle Scholar
  9. Cashmore AR, Jarillo JA, Wu Y-J, Liu D (1999) Cryptochromes: blue light receptors for plants and animals. Science 284:760–765PubMedCrossRefPubMedCentralGoogle Scholar
  10. Chelle M, Evers JB, Combes D, Varlet-Grancher C, Vos J, Andrieu B (2007) Simulation of the three-dimensional distribution of the red:far-red ratio within crop canopies. New Phytol 176:223–234PubMedCrossRefPubMedCentralGoogle Scholar
  11. Christie JM, Arvai AS, Baxter KJ, Heilmann M, Pratt AJ, O’Hara A, Kelly SM, Hothorn M, Smith BO, Hitomi K, Jenkins GI, Getzoff ED (2012) Plant UVR8 photoreceptor senses UV-B by tryptophan-mediated disruption of cross-dimer salt bridges. Science 335:1492–1496PubMedPubMedCentralCrossRefGoogle Scholar
  12. Correa-Galvis V, Poschmann G, Melzer M, Stühler K, Jahns P (2016) PsbS interactions involved in the activation of energy dissipation in Arabidopsis. Nat Plants 2:15225PubMedCrossRefPubMedCentralGoogle Scholar
  13. Day TA, Martin G, Vogelmann TC (1993) Penetration of UV-B radiation in foliage: evidence that the epidermis behaves as a non-uniform filter. Plant Cell Environ 16:735–741CrossRefGoogle Scholar
  14. Evans JR (1995) Carbon fixation profiles do reflect light absorption profiles in leaves. Austral J Plant Physiol 22:865–873Google Scholar
  15. Fan M, Li M, Liu Z, Cao P, Pan X, Zhang H, Zhao X, Zhang J, Chang W (2015) Crystal structures of the PsbS protein essential for photoprotection in plants. Nat Struct Mol Biol 22:729–735PubMedCrossRefPubMedCentralGoogle Scholar
  16. Filella I, Peñuelas J (1999) Altitudinal differences in UV absorbance, UV reflectance and related morphological traits of Quercus ilex and Rhododendron ferrugineum in the Mediterranean region. Plant Ecol 145:157–165CrossRefGoogle Scholar
  17. Gardner KH, Correa F (2012) How plants see the invisible. Science 335:1451–1452PubMedCrossRefPubMedCentralGoogle Scholar
  18. Gruber H, Heijde M, Heller W, Albert A, Seidlitz HK, Ulm R (2010) Negative feedback regulation of UV-B–induced photomorphogenesis and stress acclimation in Arabidopsis. Proc Natl Acad Sci U S A 107:20132–20137PubMedPubMedCentralCrossRefGoogle Scholar
  19. Hall DO, Rao KK (1994) Photosynthesis. Cambridge University Press, CambridgeGoogle Scholar
  20. Heijde M, Ulm R (2012) UV-B photoreceptor-mediated signalling in plants. Trends Plant Sci 17:230–237PubMedCrossRefPubMedCentralGoogle Scholar
  21. Heldt HW, Piechulla B (2010) Plant biochemistry, 4th edn. Spektrum Akad. Verl, HeidelbergGoogle Scholar
  22. Herndl GH (1996) Ultraviolett-Strahlung und Bakterioplankton. Biologie unserer Zeit 26:234–239CrossRefGoogle Scholar
  23. Holmes MG, Keiller DR (2002) Effects of pubescence and waxes on the reflectance of leaves in the ultraviolet and photosynthetic wavebands: a comparison of a range of species. Plant Cell Environ 25:85–93CrossRefGoogle Scholar
  24. Holzwarth AR, Miloslavina Y, Nilkens M, Jahns P (2009) Identification of two quenching sites active in the regulation of photosynthetic light-harvesting studied by time-resolved fluorescence. Chem Phys Lett 483:262–267CrossRefGoogle Scholar
  25. Jansen MAK, Gaba V, Greenberg BM (1998) Higher plants and UV-B radiation: balancing damage, repair and acclimation. Trends Plant Sci 3:131–135CrossRefGoogle Scholar
  26. Jenkins GI (2009) Signal transduction in responses to UV-B radiation. Annu Rev Plant Biol 60:407–431PubMedCrossRefPubMedCentralGoogle Scholar
  27. Jenkins GI (2014) The UV-B photoreceptor UVR8: from structure to physiology. Plant Cell 26(1):21–37PubMedPubMedCentralCrossRefGoogle Scholar
  28. Jiao Y, Lau OS, Deng XW (2007) Light-regulated transcriptional networks in higher plants. Nature Rev 8:217–230CrossRefGoogle Scholar
  29. Kami C, Lorrain S, Hornitschek F, Fankhauser C (2010) Light-regulated plant growth and development. Curr Top Dev Biol 91:29–66PubMedCrossRefPubMedCentralGoogle Scholar
  30. Kim G-T, Yano S, Kozuka T, Tsukaya H (2005) Photomorphogenesis of leaves: shade-avoidance and differentiation of sun and shade leaves. Photochem Photobiol Sci 4:770–774PubMedCrossRefPubMedCentralGoogle Scholar
  31. Kitajima K, Hogan KP (2003) Increases of chlorophyll a/b ratios during acclimation of tropical woody seedlings to nitrogen limitation and high light. Plant Cell Environ 26:857–865PubMedCrossRefPubMedCentralGoogle Scholar
  32. Kliebenstein DJ, Lim JE, Landry LG, Last RL (2002) Arabidopsis UVR8 regulates ultraviolet-B signal transduction and tolerance and contains sequence similarity to human Regulator of Chromatin Condensation 1. Plant Physiol 130:234–243PubMedPubMedCentralCrossRefGoogle Scholar
  33. Körner C (1999) Alpine plant life: functional ecology of high mountain ecosystems. Springer, Berlin, Heidelberg, New YorkGoogle Scholar
  34. Kühlheim C, Ågren J, Jansson S (2002) Rapid regulation of light harvesting and plant fitness in the field. Science 297:91–93CrossRefGoogle Scholar
  35. Lambers H, Chapin FS III, Pons TL (2008) Plant physiological ecology, 2nd edn. Springer, BerlinCrossRefGoogle Scholar
  36. Lau OS, Deng XW (2012) The photomorphogenic repressors COP1 and DET1: 20 years later. Trend Plant Sci 17:584–593CrossRefGoogle Scholar
  37. Li Z, Ahn TK, Avenson TJ, Ballottari M, Cruz JA, Kramer DM, Bassi R, Fleming GR, Keasling JD, Niyogi KK (2009) Lutein accumulation in the absence of zeaxanthin restores nonphotochemical quenching in the Arabidopsis thaliana npq1 mutant. Plant Cell 21:1798–1812PubMedPubMedCentralCrossRefGoogle Scholar
  38. Li X, Wang Q, Yu X, Liu H, Yang H, Liu X, Tan C, Klejnot J, Zhong D, Lin C (2011) Arabidopsis cryptochrome 2 (CRY2) functions by the photoactivation mechanism distinct from the tryptophan (trp) triad-dependent photoreduction. Proc Natl Acad Sci USA 108:20844–20849PubMedCrossRefPubMedCentralGoogle Scholar
  39. Liu H, Liu B, Zhao C, Pepper M, Lin C (2011) The action mechanisms of plant cryptochromes. Trend Plant Sci 16:684–691CrossRefGoogle Scholar
  40. MacIntyre HL, Kana TM, Anning T, Geider RJ (2002) Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria. J Phycol 38:17–38CrossRefGoogle Scholar
  41. Manetas Y (2003) The importance of being hairy: the adverse effects of hair removal on stem photosynthesis of Verbascum speciosum are due to solar UV-B radiation. New Phytol 158:503–508CrossRefGoogle Scholar
  42. Matsubara S, Krause GH, Seltmann M, Virgo A, Kursar TA, Jahns P, Winter K (2008) Lutein epoxide cycle, light harvesting and photoprotection in species of the tropical tree genus Inga. Plant Cell Environ 31:548–561PubMedCrossRefPubMedCentralGoogle Scholar
  43. Mercado LM, Bellouin N, Sitch S, Boucher O, Huntingford C, Wild M, Cox PM (2009) Impact of changes in diffuse radiation on the global land carbon sink. Nature 458:1014–1018PubMedCrossRefPubMedCentralGoogle Scholar
  44. Minagawa J (2013) Dynamic reorganization of photosynthetic supercomplexes during environmental acclimation of photosynthesis. Front Plant Sci 4:513PubMedPubMedCentralCrossRefGoogle Scholar
  45. Munk K (ed) (2009) Taschenlehrbuch Biologie Botanik. Thieme, StuttgartGoogle Scholar
  46. Munns R, Schmidt S, Beveridge C (2010) Plants in Action 2nd edition, Copyright © Australian Society of Plant Scientists, New Zealand Society of Plant Biologists, and New Zealand Institute of Agricultural and Horticultural Science.
  47. Nishio JN, Sun J, Vogelmann TC (1993) Carbon fixation gradients across spinach leaves do not follow internal light gradients. Plant Cell 5:953–961PubMedPubMedCentralCrossRefGoogle Scholar
  48. Nultsch W (2001) Allgemeine Botanik, 11th edn. G. Thieme, Stuttgart, New YorkGoogle Scholar
  49. Nybakken L, Aubert S, Bilger W (2004) Epidermal UV-screening of arctic and alpine plants along a latitudinal gradient in Europe. Polar Biol 27:391–398CrossRefGoogle Scholar
  50. Oikawa K, Kasahara M, Kiyosue T, Kagawa T, Suetsugu N, Takahashi F, Kanegae T, Niwa Y, Kadota A, Wada M (2003) CHLOROPLAST UNUSUAL POSITIONING1 is essential for proper chloroplast positioning. Plant Cell 15:2805–2815PubMedPubMedCentralCrossRefGoogle Scholar
  51. Oikawa K, Yamasato A, Kong SG, Kasahara M, Nakai M, Takahashi F, Ogura Y, Kagawa T, Wada M (2008) Chloroplast outer envelope protein CHUP1 is essential for chloroplast anchorage to the plasma membrane and chloroplast movement. Plant Physiol 148:829–842PubMedPubMedCentralCrossRefGoogle Scholar
  52. Oravecz A, Baumann A, Máté Z, Brzezinska A, Molinier J, Oakeley EJ, Ádám É, Schäfer E, Nagy F, Ulm R (2006) CONSTITUTIVELY PHOTOMORPHOGENIC 1 is required for the UV-B response in Arabidopsis. Plant Cell 18:1975–1990PubMedPubMedCentralCrossRefGoogle Scholar
  53. Osmond B, Badger M, Maxwell K, Björkman O, Leegood R (1997) Too many photons: photorespiration, photoinhibition and photooxidation. Trends Plant Sci 2:119–120CrossRefGoogle Scholar
  54. Overmann J, Cypionka H, Pfennig N (1992) An extremely low-light-adapted phototrophic sulphurbacterium from the Black Sea. Limnol Oceanogr 37:150–155CrossRefGoogle Scholar
  55. Prior SA, Pritchard SG, Runion GB (2004) Leaves and the effects of elevated carbon dioxide levels. Encyclopedia of Plant and Crop Science, Marcel Dekker IncGoogle Scholar
  56. Pritchard SG, Rogers HH, Prior SA, Peterson CM (1999) Elevated CO2 and plant structure: a review. Glob Change Biol 5:807–837CrossRefGoogle Scholar
  57. Rastogi RP, Richa SRP, Singh SP, Häder DP (2010) Photoprotective compounds from marine organisms. J Ind Microbiol Biotechnol 37:537–558PubMedCrossRefPubMedCentralGoogle Scholar
  58. Rius SP, Emiliani J, Casati P (2016) P1 epigenetic regulation in leaves of high altitude maize landraces: effect of UV-B radiation. Front Plant SciGoogle Scholar
  59. Rizzini L, Favory J-J, Cloix C, Faggionato D, O’Hara A, Kaiserli E, Baumeister R, Schäfer E, Nagy F, Jenkins GI, Ulm R (2011) Perception of UV-B by the Arabidopsis UVR8 protein. Science 332:103–106PubMedCrossRefPubMedCentralGoogle Scholar
  60. Robberecht R, Caldwell MM, Billings WD (1980) Leaf ultraviolet optical properties along a latitudinal gradient in the arctic–alpine life zone. Ecology 61:612–619CrossRefGoogle Scholar
  61. Schäfer KVR, Dirk VW (2011) The physical environment within forests. Nat Educ Knowl 2(12):5Google Scholar
  62. Schnitzler JP, Jungblut TP, Heller W, Köfferlein M, Hutzler P, Heinzmann U, Schmelzer E, Ernst D, Langebartels C, Sandermann H Jr (1996) Tissue localization of UV-B screening pigments and of chalcone synthase mRNA in needles of Scots pine seedlings. New Phytol 132:247–258CrossRefGoogle Scholar
  63. Scholes GD, Fleming GR, Olaya-Castro A, van Grondelle R (2011) Lessons from nature about solar light harvesting. Nat Chem 3:763–774PubMedCrossRefPubMedCentralGoogle Scholar
  64. Schreiber U, Schliwa U, Bilger W (1986) Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth Res 10:51–62PubMedCrossRefPubMedCentralGoogle Scholar
  65. Schreiber U, Bilger W, Neubauer C (1994) Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment on in vivo photosynthesis, Ecol Studies. Springer, Berlin, Heidelberg, New York; 100:49–70.CrossRefGoogle Scholar
  66. Strasburger F (1983) Lehrbuch der Botanik. 32nd edn.Fischer, StuttgartGoogle Scholar
  67. Stratmann J (2003) Ultraviolet-B radiation co-opts defense signalling pathways. Trends Plant Sci 8:526–533PubMedCrossRefPubMedCentralGoogle Scholar
  68. Strobl S, Fetene M, Beck EH (2011) Analysis of the “shelter tree-effect” of natural and exotic forest canopies on the growth of young Podocarpus falcatus trees in southern Ethiopia. Trees 25:769–783CrossRefGoogle Scholar
  69. Taiz L, Zeiger E et al (2015) Plant physiology and development, 6th edn. Sinauer Associates Inc., SunderlandGoogle Scholar
  70. Usami H, Maeda T, Fujii Y, Oikawa K, Takahashi F, Kagawa T, Wada M, Kasahara M (2012) CHUP1 mediates actin-based light-induced chloroplast avoidance movement in the moss Physcomitrella patens. Planta 236:1889–1897PubMedCrossRefPubMedCentralGoogle Scholar
  71. Velez-Ramirez AI, van Ieperen W, Vreugdenhil D, Millenaar FF (2011) Plants under continuous light. Trends Plant Sci 16:310–318PubMedCrossRefPubMedCentralGoogle Scholar
  72. Wada M (2013) Chloroplast movement. Plant Sci 210:177–182PubMedCrossRefPubMedCentralGoogle Scholar
  73. Weiler E, Nover L (2008) Allgemeine und molekulare Botanik. Georg Thieme Verlag Stuttgart, New YorkGoogle Scholar
  74. Wu D, Hu Q, Yan Z, Chen W, Yan C, Huang X, Zhang J, Deng H, Wang H, Deng XW, Shi Y (2012) Structural basis of ultraviolet-B perception by UVR8. Nature 484:214–220PubMedCrossRefPubMedCentralGoogle Scholar
  75. Yin X, Singer SD, Qiao H, Liu Y, Jiao C, Wang H, Li Z, Fei Z, Wang Y, Fan C, Wang X (2016) Insights into the mechanisms underlying ultraviolet-C induced resveratrol metabolism in grapevine (V. amurensis Rupr.) cv. “Tonghua-3”. Front Plant Sci 7:503PubMedPubMedCentralGoogle Scholar
  76. Zaks J, Amarnath K, Kramer DM, Niyogi K, Fleming GR (2012) A kinetic model of rapidly reversible nonphotochemical quenching. Proc Natl Acad Sci U S A 109:15757–15762PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ernst-Detlef Schulze
    • 1
  • Erwin Beck
    • 2
  • Nina Buchmann
    • 3
  • Stephan Clemens
    • 2
  • Klaus Müller-Hohenstein
    • 4
  • Michael Scherer-Lorenzen
    • 5
  1. 1.Max Planck Institute for BiogeochemistryJenaGermany
  2. 2.Department of Plant PhysiologyUniversity of BayreuthBayreuthGermany
  3. 3.Department of Environmental Systems ScienceETH ZurichZurichSwitzerland
  4. 4.Department of BiogeographyUniversity of BayreuthBayreuthGermany
  5. 5.Chair of Geobotany, Faculty of BiologyUniversity of FreiburgFreiburgGermany

Personalised recommendations