Advertisement

Plant Ecology pp 827-841 | Cite as

Global Biogeochemical Cycles

  • Ernst-Detlef Schulze
  • Erwin Beck
  • Nina Buchmann
  • Stephan Clemens
  • Klaus Müller-Hohenstein
  • Michael Scherer-Lorenzen
Chapter

Abstract

In this chapter, the major global biogeochemical cycles (carbon, water, nitrogen and sulphur) are introduced in relation to environmental drivers as well as LU. To understand the interactions of the global biosphere with management and biogeochemistry, first, the global distribution of terrestrial ecosystems is presented, both based on climatic zones as well as on management. Then the major biogeochemical cycles of carbon, water, nitrogen and sulphur are explained, elaborating on the identity and the magnitude of the respective pools and fluxes, their interactions, but also on their major disturbances related to global change. Finally, the concept of ecosystem services is described.

References

  1. Bond WJ, Woodward FI, Midgley GF (2004) The global distribution of ecosystems in a world without fire. New Phytol 165:525–538CrossRefGoogle Scholar
  2. Canadell JG, Schulze E-D (2014) Global potential of biospheric carbon management for climate mitigation. Nat Commun 5:5282CrossRefGoogle Scholar
  3. Cerveny RS, Balling RC (1998) Weekly cycles of air pollutants, precipitation and tropical cyclones in the coastal NW Atlantic region. Nature 394:561–563CrossRefGoogle Scholar
  4. Charlson RJ, Anderson TL, and McDuff RE (1992) The sulfur cycle. In: Butcher SS, Charlson RJ, Orians GH, and Wolfe GV (eds.) Global biogeochemical cycles. Academic Press: London, pp 285–300Google Scholar
  5. Condon AG, Richards RA, Rebetzke GJ, Farquhar GD (2004) Breeding for high water-use efficiency. J Exp Bot 55:2447–2460CrossRefGoogle Scholar
  6. Costanza R, D’Arge R, De Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill RV, Paruelo J, Raskin RG, Sutton P, Van den Bel M (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260CrossRefGoogle Scholar
  7. Cramer W, Bondeau A, Woodward FI, Prentice IC, Betts RA, Brovkin V, Cox PM, Fisher V, Foley JA, Friend AD, Kucharik C, Lomas MR, Ramankutty N, Sitch S, Smith B, White A, Young-Molling C (2001) Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Glob Change Biol 7:357–373CrossRefGoogle Scholar
  8. Daily G (1997) Nature’s services. Island Press, Washington, DCGoogle Scholar
  9. Gleick PH, Palaniappan M (2010) Peak water limits to freshwater withdrawal and use. Proceedings of the National Academy of Sciences 107:11155–11162CrossRefGoogle Scholar
  10. Gruber N, Galloway JN (2008) An earth-system perspective of the global nitrogen cycle. Nature 451:293–296CrossRefGoogle Scholar
  11. IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptation: a special report of working groups I and II of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  12. IPCC (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds.)]. Cambridge University Press, CambridgeGoogle Scholar
  13. Jung M, Henkel K, Herold M, Churkina G (2006) Exploiting synergies of global land cover products for carbon cycle modeling. Remote Sens Environ 101:534–553CrossRefGoogle Scholar
  14. Kaplan JO (2001) Geophysical applications of vegetation modeling. Ph.D. thesis. Lund University, Lund.  https://doi.org/10.5281/zenodo.1492908 CrossRefGoogle Scholar
  15. Keenan TF, Hollinger DY, Bohrer G, Dragoni D, Munger JW, Schmid HP, Richardson AD (2013) Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499:324–328CrossRefGoogle Scholar
  16. Le Quéré C, Andrew RM, Canadell JG, Sitch S, Korsbakken JI, Peters GP, Manning AC, Boden TA, Tans PP, Houghton RA, Keeling RF, Alin S, Andrews OD, Anthoni P, Barbero L, Bopp L, Chevallier F, Chini LP, Ciais P, Currie K, Delire C, Doney SC, Friedlingstein P, Gkritzalis T, Harris I, Hauck J, Haverd V, Hoppema M, Klein Goldewijk K, Jain AK, Kato E, Körtzinger A, Landschützer P, Lefèvre N, Lenton A, Lienert S, Lombardozzi D, Melton JR, Metzl N, Millero F, Monteiro PMS, Munro DR, Nabel JEMS, Nakaoka S, O’Brien K, Olsen A, Omar AM, Ono T, Pierrot D, Poulter B, Rödenbeck C, Salisbury J, Schuster U, Schwinger J, Séférian R, Skjelvan I, Stocker BD, Sutton AJ, Takahashi T, Tian H, Tilbrook B, van der Laan-Luijkx IT, van der Werf GR, Viovy N, Walker AP, Wiltshire AJ, Zaehle S (2016) Global carbon budget 2016. Earth Syst Sci Data 8:605–649CrossRefGoogle Scholar
  17. Li B, Gasser T, Ciais P, Piao S, Tao S, Balkanski Y, Hauglustaine D, Boisier J-P, Chen Z, Huang M, Li LZ, Li Y, Liu H, Liu J, Peng S, Shen Z, Sun Z, Wang R, Wang T, Yin G, Yin Y, Zeng H, Zeng Z, Zhou F (2016) The contribution of China’s emissions to global climate forcing. Nature 531:357–361CrossRefGoogle Scholar
  18. Merbold L, Eugster W, Stieger J, Zahniser M, Nelson D, Buchmann N (2014) Greenhouse gas budget (CO2, CH4 and N2O) of intensively managed grassland following restoration. Glob Change Biol 20:1913–1928CrossRefGoogle Scholar
  19. Millennium Ecosystem Assessment (MA) (2005) Ecosystems and human well-being: current state and trends. Island Press, Washington, DCGoogle Scholar
  20. Nemani RR, Keeling CD, Hashimoto H, Jolly WM, Piper SC, Tucker CJ, Myneni RB, Running SW (2003) Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300:1560–1563CrossRefGoogle Scholar
  21. Oki R, Kanae S (2006) Global hydrological cycles and world water resources. Science 313:1068–1072CrossRefGoogle Scholar
  22. Piao S (2009) The carbon balance of terrestrial ecosystems in China. Nature 458:1009–1013CrossRefGoogle Scholar
  23. Schlesinger WH (1997) Biogeochemistry: an analysis of global change. Academic Press, San DiegoGoogle Scholar
  24. Schlesinger WH, Bernhardt E (2013) Biogeochemistry: an analysis of global change. Academic Press, San DiegoCrossRefGoogle Scholar
  25. Schulze E-D (1982) Plant life forms and their carbon, water and nutrient relations. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Encyclopedia of plant physiology, Physiological plant ecology II, vol 12B. Water Relations and Photosynthetic Productivity, Springer, BerlinCrossRefGoogle Scholar
  26. Schulze E-D (2000) Der Einfluss des Menschen auf die biogeochemischen Kreisläufe der Erde. Max-Planck-Gesellschaft Jahrbuch 2000:39–58Google Scholar
  27. Schulze E-D, Vygodskaya NN, Tchebakova NM, Czimczik CI, Kozlov DN, Lloyd J, Mollicone D, Parfenova E, Siderov KN, Varlagin AV, Wirth C (2002) The European transect: an introduction to the experimental design. Tellus 54B:421–428Google Scholar
  28. Steffen W, Sanderson A, Tyson P, Jäger J, Matson P, Moore III B, Oldfield F, Richardson K, Schellnhuber HJ, Turner II BL, Wasson RJ (2004) Global change and the Earth system: a planet under pressure. Springer, BerlinGoogle Scholar
  29. TEEB (2010) The economics of ecosystems and biodiversity: ecological and economic foundations. [Kumar P (ed.)] Earthscan, LondonGoogle Scholar
  30. Tian H, Chen G, Lu C, Xu X, Ren W, Zang B, Banger K, Tao B, Pan S, Liu M, Zhang C, Bruhwiler L, Eofsy S (2015) Global methane and nitrous oxide emissions from terrestrial ecosystems due to multiple environmental changes. Ecosyst Health Sustain 1:1–20CrossRefGoogle Scholar
  31. Toon OB (2000) How pollution suppresses rain. Science 287:1763–1765CrossRefGoogle Scholar
  32. WBGU (1999) World in transition: ways towards sustainable management of fresh water. Springer, Berlin pp 392Google Scholar
  33. Wolf S, Eugster W, Ammann C, Häni M, Zielis S, Hiller R, Stieger J, Imer D, Merbold L, Buchmann N (2013) Contrasting response of grassland versus forest carbon and water fluxes to spring drought in Switzerland. Environ Res Lett 8:035007CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ernst-Detlef Schulze
    • 1
  • Erwin Beck
    • 2
  • Nina Buchmann
    • 3
  • Stephan Clemens
    • 2
  • Klaus Müller-Hohenstein
    • 4
  • Michael Scherer-Lorenzen
    • 5
  1. 1.Max Planck Institute for BiogeochemistryJenaGermany
  2. 2.Department of Plant PhysiologyUniversity of BayreuthBayreuthGermany
  3. 3.Department of Environmental Systems ScienceETH ZurichZurichSwitzerland
  4. 4.Department of BiogeographyUniversity of BayreuthBayreuthGermany
  5. 5.Chair of Geobotany, Faculty of BiologyUniversity of FreiburgFreiburgGermany

Personalised recommendations