Advertisement

General Themes of Molecular Stress Physiology

  • Ernst-Detlef Schulze
  • Erwin Beck
  • Nina Buchmann
  • Stephan Clemens
  • Klaus Müller-Hohenstein
  • Michael Scherer-Lorenzen
Chapter

Abstract

In this chapter we introduce stress as an ever-present condition of plant life. The various strategies used by plants to cope with fluctuating environmental conditions are defined. An understanding of molecular stress physiology is facilitated by differentiating the responses of an individual (acclimation) from evolutionary processes at the population and species levels (adaptation). Stress tolerance and avoidance reactions of a plant involve a number of common features independent of the type of stress: sensing of environmental or internal changes, long-distance transfer of information between organs and tissues, signal transduction cascades at the cellular level, transcriptional control and the occurrence of oxidative stress. The essential role of model systems in elucidating the molecular mechanisms underlying these processes is explained. Another integral part of stress responses is the modulation of growth, that is, a change in resource allocation in favour of stress resistance. A second major strategy, besides stress resistance, that enables a plant to survive and reproduce in a particular environment is escape from unfavourable conditions. Escape is possible through the anticipation of seasonal changes and the timing of key developmental transitions, such as germination, in response to environmental factors. Anticipation is made possible by the biological clock and photoperiodism. Both are molecularly understood quite well now and are discussed here alongside the winter memory of plants and possible trans-generational stress memory phenomena.

References

  1. Achard P, Cheng H, De Grauwe L et al (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311:91–94PubMedCrossRefGoogle Scholar
  2. Alonso JM, Stepanova AN, Leisse TJ et al (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657PubMedCrossRefGoogle Scholar
  3. Amasino R (2010) Seasonal and developmental timing of flowering. Plant J 61:1001–1013PubMedCrossRefGoogle Scholar
  4. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399PubMedCrossRefGoogle Scholar
  5. Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815Google Scholar
  6. Assmann SM (2013) Natural variation in abiotic stress and climate change responses in Arabidopsis: implications for twenty-first-century agriculture. Int J Plant Sci 174:3–26CrossRefGoogle Scholar
  7. Bewley JD (1997) Seed germination and dormancy. Plant Cell 9:1055–1066PubMedPubMedCentralCrossRefGoogle Scholar
  8. Böhlenius H, Huang T, Charbonnel-Campaa L et al (2006) CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312:1040–1043PubMedCrossRefGoogle Scholar
  9. Boyer JS (1982) Plant productivity and environment. Science 218:443–448PubMedCrossRefGoogle Scholar
  10. Buchanan B, Gruissem W, Jones R (2015) Biochemistry and molecular biology of plants, 2nd edn. Wiley, HobokenGoogle Scholar
  11. Claeys H, Inzé D (2013) The agony of choice: how plants balance growth and survival under water-limiting conditions. Plant Physiol 162:1768–1779PubMedPubMedCentralCrossRefGoogle Scholar
  12. Claeys H, Landeghem SV, Dubois M et al (2014) What is stress? Dose–response effects in commonly used in vitro stress assays. Plant Physiol 165:519–527PubMedPubMedCentralCrossRefGoogle Scholar
  13. Clausen J, Keck D, Hiesey W (1947) Heredity of geographically and ecologically isolated races. Am Nat 81:114–133PubMedCrossRefGoogle Scholar
  14. Colebrook EH, Thomas SG, Phillips AL, Hedden P (2014) The role of gibberellin signalling in plant responses to abiotic stress. J Exp Biol 217:67–75PubMedCrossRefGoogle Scholar
  15. Darwin C (1880) The power of movement in plants. John Murray, LondonGoogle Scholar
  16. Dodd AN, Kudla J, Sanders D (2010) The language of calcium signaling. Annu Rev Plant Biol 61:593–620PubMedCrossRefGoogle Scholar
  17. Dodd AN, Salathia N, Hall A et al (2005) Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309:630–633PubMedPubMedCentralCrossRefGoogle Scholar
  18. Donohue K, Rubio de Casas R, Burghardt L et al (2010) Germination, postgermination adaptation, and species ecological ranges. Annu Rev Ecol Evol Syst 41:293–319CrossRefGoogle Scholar
  19. Finch-Savage WE, Leubner-Metzger G (2006) Seed dormancy and the control of germination. New Phytol 171:501–523PubMedCrossRefGoogle Scholar
  20. Finkelstein R, Reeves W, Ariizumi T, Steber C (2008) Molecular aspects of seed dormancy. Annu Rev Plant Biol 59:387–415.PubMedCrossRefGoogle Scholar
  21. Fitter A, Hay RKM (1987) Environmental physiology of plants, 2nd edn. Academic Press, LondonGoogle Scholar
  22. Flematti GR, Ghisalberti EL, Dixon KW, Trengove RD (2004) A compound from smoke that promotes seed germination. Science 305:977PubMedCrossRefGoogle Scholar
  23. Gilroy S, Suzuki N, Miller G et al (2014) A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signaling. Trends Plant Sci 19:623–630PubMedCrossRefGoogle Scholar
  24. Goodspeed D, Chehab EW, Min-Venditti A et al (2012) Arabidopsis synchronizes jasmonate-mediated defense with insect circadian behavior. Proceedings of the National Academy of Sciences 109:4674–4677CrossRefGoogle Scholar
  25. Gould S, Lewontin R (1979) Spandrels of San Marco and the Panglossian paradigm—a critique of the adaptationist program. Proc R Soc Lond B Biol Sci 205:581–598PubMedCrossRefGoogle Scholar
  26. Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141:312–322PubMedPubMedCentralCrossRefGoogle Scholar
  27. Hansen J (2000) Überleben in der Kälte—wie Pflanzen sich vor Froststress schützen. Biologie in unserer Zeit 30:24–34CrossRefGoogle Scholar
  28. Harmer SL, Hogenesch JB, Straume M et al (2000) Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290:2110–2113PubMedPubMedCentralCrossRefGoogle Scholar
  29. Hilker M, Schwachtje J, Baier M et al (2016) Priming and memory of stress responses in organisms lacking a nervous system. Biol Rev 91:1118–1133PubMedCrossRefGoogle Scholar
  30. Holdsworth MJ, Bentsink L, Soppe WJJ (2008) Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytol 179:33–54PubMedCrossRefGoogle Scholar
  31. Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59:41–66PubMedCrossRefGoogle Scholar
  32. Hsu PY, Harmer SL (2014) Wheels within wheels: the plant circadian system. Trends Plant Sci 19:240–249PubMedCrossRefGoogle Scholar
  33. Huber AE, Bauerle TL (2016) Long-distance plant signaling pathways in response to multiple stressors: the gap in knowledge. J Exp Bot 67:2063–2079PubMedCrossRefGoogle Scholar
  34. Huijser P, Schmid M (2011) The control of developmental phase transitions in plants. Development 138:4117–4129PubMedCrossRefGoogle Scholar
  35. Ishitani M, Xiong LM, Stevenson B, Zhu JK (1997) Genetic analysis of osmotic and cold stress signal transduction in Arabidopsis: interactions and convergence of abscisic acid–dependent and abscisic acid–independent pathways. Plant Cell 9:1935–1949PubMedPubMedCentralGoogle Scholar
  36. Iwasaki M, Paszkowski J (2014) Epigenetic memory in plants. EMBO J 33:1987–1998PubMedPubMedCentralCrossRefGoogle Scholar
  37. Johanson U, West J, Lister C et al (2000) Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science 290:344–347PubMedCrossRefGoogle Scholar
  38. Karpinski S, Reynolds H, Karpinska B et al (1999) Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis. Science 284:654–657PubMedCrossRefGoogle Scholar
  39. Kilian J, Whitehead D, Horak J et al (2007) The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J 50:347–363PubMedCrossRefGoogle Scholar
  40. Kobayashi Y, Weigel D (2007) Move on up, it’s time for change—mobile signals controlling photoperiod-dependent flowering. Genes Dev 21:2371–2384PubMedCrossRefGoogle Scholar
  41. Kochian LV, Piñeros MA, Liu J, Magalhaes JV (2015) Plant adaptation to acid soils: the molecular basis for crop aluminum resistance. Annu Rev Plant Biol 66:571–598PubMedCrossRefGoogle Scholar
  42. Koornneef M, Hanhart CJ, van der Veen JH (1991) A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol Gen Genet 229:57–66PubMedCrossRefGoogle Scholar
  43. Lambers H, Chapin FS III, Pons TL (2008) Plant physiological ecology, 2nd edn. Springer, New YorkCrossRefGoogle Scholar
  44. Larcher W, Bodner M (1980) Dose-lethality nomogram for characterizing of the chilling susceptibility of tropical plants. Angew Bot 54:273–278Google Scholar
  45. Levitt J (1980) Responses of plants to environmental stresses, 2nd edn. Academic Press, New YorkGoogle Scholar
  46. Lichtenthaler HK, Miehe JA (1997) Fluorescence imaging as a diagnostic tool for plant stress. Trends Plant Sci 2:316–320CrossRefGoogle Scholar
  47. Marino D, Dunand C, Puppo A, Pauly N (2012) A burst of plant NADPH oxidases. Trends Plant Sci 17:9–15PubMedCrossRefGoogle Scholar
  48. McAinsh MR, Pittman JK (2009) Shaping the calcium signature. New Phytol 181:275–294PubMedCrossRefGoogle Scholar
  49. Mitchell-Olds T, Schmitt J (2006) Genetic mechanisms and evolutionary significance of natural variation in Arabidopsis. Nature 441:947–952PubMedCrossRefGoogle Scholar
  50. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410PubMedCrossRefGoogle Scholar
  51. Mittler R, Blumwald E (2015) The roles of ROS and ABA in systemic acquired acclimation. Plant Cell 27:64–70PubMedPubMedCentralCrossRefGoogle Scholar
  52. Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149:88–95PubMedPubMedCentralCrossRefGoogle Scholar
  53. Nelson DC, Flematti GR, Ghisalberti EL et al (2012) Regulation of seed germination and seedling growth by chemical signals from burning vegetation. Annu Rev Plant Biol 63:107–130PubMedCrossRefGoogle Scholar
  54. Pecinka A, Mittelsten Scheid O (2012) Stress-induced chromatin changes: a critical view on their heritability. Plant Cell Physiol 53:801–808PubMedPubMedCentralCrossRefGoogle Scholar
  55. Pierik R, Testerink C (2014) The art of being flexible: how to escape from shade, salt, and drought. Plant Physiol 166:5–22PubMedPubMedCentralCrossRefGoogle Scholar
  56. Provart NJ, Alonso J, Assmann SM et al (2016) 50 years of Arabidopsis research: highlights and future directions. New Phytol 209:921–944PubMedCrossRefGoogle Scholar
  57. Ryu S, Costa A, Xin Z, Li P (1995) Induction of cold-hardiness by salt stress involves synthesis of cold-responsive and abscisic acid–responsive proteins in potato (Solanum commersonii Dun). Plant Cell Physiol 36:1245–1251Google Scholar
  58. Santner A, Estelle M (2009) Recent advances and emerging trends in plant hormone signalling. Nature 459:1071–1078PubMedCrossRefGoogle Scholar
  59. Scheibe R, Beck E (2011) Drought, desiccation, and oxidative stress. In: Lüttge U, Beck E, Bartels D (eds) Plant desiccation tolerance, Ecol. Studies, vol 215. Springer, Berlin, Heidelberg, pp 209–231CrossRefGoogle Scholar
  60. Suzuki N, Rivero RM, Shulaev V et al (2014) Abiotic and biotic stress combinations. New Phytol 203:32–43PubMedCrossRefGoogle Scholar
  61. Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16:123–132PubMedCrossRefGoogle Scholar
  62. Wang RH, Farrona S, Vincent C et al (2009) Pep1 regulates perennial flowering in Arabis alpina. Nature 459:423–427PubMedCrossRefGoogle Scholar
  63. Wang W, Barnaby JY, Tada Y et al (2011) Timing of plant immune responses by a central circadian regulator. Nature 470:110–114PubMedPubMedCentralCrossRefGoogle Scholar
  64. Yanovsky MJ, Kay SA (2002) Molecular basis of seasonal time measurement in Arabidopsis. Nature 419:308–312PubMedCrossRefGoogle Scholar
  65. Zeevaart JAD (2006) Florigen coming of age after 70 years. Plant Cell 18:1783–1789PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ernst-Detlef Schulze
    • 1
  • Erwin Beck
    • 2
  • Nina Buchmann
    • 3
  • Stephan Clemens
    • 2
  • Klaus Müller-Hohenstein
    • 4
  • Michael Scherer-Lorenzen
    • 5
  1. 1.Max Planck Institute for BiogeochemistryJenaGermany
  2. 2.Department of Plant PhysiologyUniversity of BayreuthBayreuthGermany
  3. 3.Department of Environmental Systems ScienceETH ZurichZurichSwitzerland
  4. 4.Department of BiogeographyUniversity of BayreuthBayreuthGermany
  5. 5.Chair of Geobotany, Faculty of BiologyUniversity of FreiburgFreiburgGermany

Personalised recommendations