Advertisement

Grundlagen der Verbrennung in stationären Gasturbinen

  • Thomas SattelmayerEmail author
Chapter
Part of the VDI-Buch book series (VDI-BUCH)

Zusammenfassung

In den Kap. 10–13 wird anhand ausgeführter Beispiele die Technologie der Gasturbinenbrennkammern und ihrer Peripherie beschrieben. Der heutige Stand ist das Ergebnis einer simultanen Optimierung mehrerer in Brennkammern ablaufender Teilprozesse. Wenn die Evolution der Brennkammertechnik auch zu teilweise sehr unterschiedlichen technischen Lösungen geführt hat, besteht doch eine große Ähnlichkeit in der Weise, wie die Teilprozesse in den Brennkammern ablaufen und miteinander wechselwirken. Auf diese gemeinsamen verbrennungstechnischen Grundlagen soll nachfolgend phänomenologisch beschreibend eingegangen werden, um die Basis für das Verständnis der individuellen Brennkammerdesigns zu schaffen.

Literatur

  1. 1.
    Bockhorn H (1994) Soot Formation in Combustion. Springer, Berlin CrossRefGoogle Scholar
  2. 2.
    Bradley D (1992) How Fast Can We Burn? 24th Symposium (International) on Combustion, S 247–262 CrossRefGoogle Scholar
  3. 3.
    Cano Wolff M et al. (1998) The Influence of Evaporation on the Autoignition-Delay of n-Heptane Air Mixtures under Gas Turbine Conditions. 27th Symposium (International) on Combustion, S 2025–2031 CrossRefGoogle Scholar
  4. 4.
    Clavin P, Siggia ED (1991) Turbulent Premixed Flames and Sound Generation. Combustion Science and Technology 78, 147–155 CrossRefGoogle Scholar
  5. 5.
    Dean AM, Bozzelli JW (2000) Combustion Chemistry of Nitrogen. In: Gardiner WC (Hrsg) Gas-Phase Combustion Chemistry. Springer, New York Google Scholar
  6. 6.
    Dinkelacker F et al. (1999) Optimierung der Brennstoff-Luft Vermischung in einem Gasturbinen-Brennkammersegment mithilfe der planaren laserinduzierten Tracer-Fluoreszenz-Messtechnik. Deutscher Flammentag, VDI-Bericht 1492, S 475–480 Google Scholar
  7. 7.
    Fieweger K (1996) Selbstzündung von Kohlenwasserstoff/Luft-Gemischen unter motorischen Randbedingungen. Dissertation, RWTH Aachen. Shaker, Herzogenrath, ISBN 3-8265-1869-1 Google Scholar
  8. 8.
    Fritz J, Kröner M, Sattelmayer T (2004) Flashback in a Swirl Burner with Cylindrical Premixing Zone. Journal of Engineering for Gas Turbines and Power 126, 2:276–283 CrossRefGoogle Scholar
  9. 9.
    Görner K (1991) Technische Verbrennungssysteme. Springer, Berlin CrossRefGoogle Scholar
  10. 10.
    Guin C (1998) Characterisation of Autoignition and Flashback in Premixed Injection Systems. AVT Symposium on Gas turbine Engine Combustion, Emissions and Alternative Fuels, October 12–16, Lisbon Google Scholar
  11. 11.
    Hirsch C et al. (2007) A spectral model for the sound pressure of turbulent premixed combustion, 31st Symposium (International) on Combustion, Vol 31, pp 1435–1441 Google Scholar
  12. 12.
    Kalb JR, Sattelmayer T (2006) Lean blowout limit and NOx production of a premixed sub-ppm NOx burner with periodic recirculation of combustion products. Journal of Engineering for Gas Turbines and Power 128, 247–254 CrossRefGoogle Scholar
  13. 13.
    Kiesewetter F, Konle M, Sattelmayer T (2007) Analysis of combustion induced vortex breakdown driven flame flashback in a premix burner with cylindrical mixing zone. Journal of Engineering for Gas Turbines & Power 129, 929–936 CrossRefGoogle Scholar
  14. 14.
    Klein SA (2000) On the Acoustics of Turbulent Non-Premixed Flames. FEBO Druck, Enschede, ISBN 90-36514096 Google Scholar
  15. 15.
    Konle M, Kiesewetter F, Sattelmayer T (2008) Simultaneous high repetition rate PIV-LIF-measurements of CIVB driven flashback. Experiments in Fluids, 44, 529–538 CrossRefGoogle Scholar
  16. 16.
    Kröner M et al. (2007) Flame propagation in swirling flows – effect of local extinction on the combustion induced vortex breakdown. Combustion, Science and Technology, 179, 1385–1416 CrossRefGoogle Scholar
  17. 17.
    Lawn CJ (1982) Criteria for Acoustic Pressure Oscillations to be Driven by a Diffusion Flame. 19th Symposium (International) on Combustion, pp 237–244 CrossRefGoogle Scholar
  18. 18.
    Lefebvre A, Freeman W, Cowell L (1986) Spontaneous Ignition Delay Characteristics of Gaseous Hydrocarbon-Fuel/Air Mixtures. NASA CR–175064 Google Scholar
  19. 19.
    Lewis B, Elbe Gv (1987) Combustion, Flames and Explosions of Gases. Academic Press Google Scholar
  20. 20.
    Li SC, Williams FA (2000) Reaction Mechanisms for Methane Ignition. Proceedings of ASME TURBOEXPO 2000, May 8–11, Munich, 2000-GT-145 Google Scholar
  21. 21.
    Lieuwen T et al. (2008) Burner development and operability issues associated with steady flowing syngas fired combustors. Combustion, Science and Technology 180, (6):1169–1192 CrossRefGoogle Scholar
  22. 22.
    Merker GP, Stiesch G (1999) Technische Verbrennung: Motorische Verbrennung. Teubner, Stuttgart Leipzig CrossRefGoogle Scholar
  23. 23.
    Naber JD et al. (1994) Effects of Natural Gas Composition on Ignition Delay under Diesel Conditions. Combustion and Flame 99, 192–200 CrossRefGoogle Scholar
  24. 24.
    Plee SL, Mellor AM (1978) Review of Flashback reported in Prevaporizing/Premizing Combustors. Combustion and Flame 32, 193–203 CrossRefGoogle Scholar
  25. 25.
    Putnam AA (1971) Combustion Driven Oscillations in Industry. Elsevier, New York, NY Google Scholar
  26. 26.
    Rayleigh JWS (1878) The Explanation of Certain Acoustic Phenomena. Nature 18, 319–321 CrossRefGoogle Scholar
  27. 27.
    Sattelmayer T et al. (1998) NO\({}_{x}\)-Abatement Potential of Lean-Premixed GT-Combustors. Journal of Engineering for Gas Turbine and Power, Transactions of the ASME 120, 48–59CrossRefGoogle Scholar
  28. 28.
    Sattelmayer T (2003) Influence of the Combustor Aerodynamics on Combustion Instabilities from Equivalence Ratio Fluctuations, Journal of Engineering for Gas Turbines and Power 125, 11–19 CrossRefGoogle Scholar
  29. 29.
    Schmid H-P, Habisreuther P, Leuckel W (1998) A Model for Calculating Heat Release in Premixed Turbulent Flames. Combustion and Flame 113, 79–91 CrossRefGoogle Scholar
  30. 30.
    Seume JR et al. (1998) Application of Active Combustion Instability Control to a Heavy Duty Gas Turbine. Journal of Engineering for Gas Turbine and Power, Transactions of the ASME 120, 721–726 CrossRefGoogle Scholar
  31. 31.
    Spadaccini LJ, Te Velde JA (1982) Autoignition Characteristics of Aircraft-Type Fuels. Combustion and Flame 46, 283–300 CrossRefGoogle Scholar
  32. 32.
    Spadaccini LJ, Colket MB (1994) Ignition Delay Characteristics of Methane Fuels. Prog Energy Combust Sci 20, 431–460 CrossRefGoogle Scholar
  33. 33.
    Tacina RR (1983) Autoignition in Premixing-Prevaporizing Fuel Duct Using Three Different Fuel Injection Schemes at Inlet Temperatures to 1 250 K. NASA TM-82938 Google Scholar
  34. 34.
    Warnatz J et al. (1982) Experimental Investigation and Computational Simulation of Acetylen-Oxygen Flames from Near Stoichiometric to Sooting Conditions. 19th Symposium (International) on Combustion, pp 197–209 Google Scholar
  35. 35.
    Warnatz J, Maas U, Dibble RW (1996) Combustion. Springer, Berlin CrossRefGoogle Scholar
  36. 36.
    Wohl (1952) Quenching, Flash-Back, Blow-Off – Theory and Experiment. 4th Symposium (International) on Combustion, pp 69–89 Google Scholar
  37. 37.
    Zimont V et al. (1998) An Efficient Computational Model for Premixed Turbulent Combustion at High Reynolds Numbers Based on a Turbulent Flame Speed Closure. Journal of Engineering for Gas Turbine and Power (1996), 120, 526–532 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.TU MünchenGarchingDeutschland

Personalised recommendations