• Sabine Schmitz
  • Christine Desel
Part of the Experimentator book series (EXPERIMENTATOR)


Die Fluoreszenzmikroskopie ist Teil der Lichtmikroskopie und charakterisiert durch farbige Lichtsignale vor dunklem Hintergrund. Anhand von bunten Lichtmustern in Zellen oder im Gewebe können intra- und extrazelluläre Strukturen dargestellt sowie Funktion, Wirkung und Dynamik von Proteinen und Genen aufgedeckt werden. Viele Forscher verbringen Stunden (oder auch Tage) in der Regel allein in kleinen abgedunkelten Räumen, um farbige Lichtpunkte zu verfolgen, abzulichten und zu verstehen.


  1. 1.
    Alford R, Simpson HM, Duberman J, Hill GC, Ogawa M, Regino C, Kobayashi H, Choyke PL (2009) Toxicity of organic fluorophores used in molecular imaging: literature review. Mol Imaging 8:341–354CrossRefPubMedGoogle Scholar
  2. 2.
    Aliye N, Fabbretti A, Lupidi G, Tsekoa T, Spurio R (2015) Engineering color variants of green fluorescent protein (GFP) for thermostability, pH-sensitivity, and improved folding kinetics. Appl Microbiol Biotechnol 99:1205–1216CrossRefPubMedGoogle Scholar
  3. 3.
    Bayani J, Squire J. 2004. Multi-color FISH techniques. In: Curr Protoc Cell Biol24(1): 22.5.1–22.5.25. Chapter 22: Unit 22.25.
  4. 4.
    Bianchini P, Diaspro A (2008) Three-dimensional (3D) backward and forward second harmonic generation (SHG) microscopy of biological tissues. J Biophotonics 1:443–450CrossRefPubMedGoogle Scholar
  5. 5.
    Bolte S, Cordelieres FP (2006) A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 224:213–232CrossRefPubMedGoogle Scholar
  6. 6.
    Chen X, Zhong Z, Xu Z, Chen L, Wang Y (2010) 2',7'-Dichlorodihydrofluorescein as a fluorescent probe for reactive oxygen species measurement: Forty years of application and controversy. Free Radic Res 44:587–604CrossRefPubMedGoogle Scholar
  7. 7.
    Cox S, Jones GE (2013) Imaging cells at the nanoscale. Int J Biochem Cell Biol 45:1669–1678CrossRefPubMedGoogle Scholar
  8. 8.
    Das K, Tan P (2013) Molecular cytogenetics: recent developments and applications in cancer. Clin Genet. 84:315–325CrossRefPubMedGoogle Scholar
  9. 9.
    Day CA, Kraft LJ, Kang M, Kenworthy AK (2012) Analysis of protein and lipid dynamics usingconfocal fluorescence recovery after photobleaching (FRAP). In: Curr Protoc Cytom 62(1):2.19.1–2.19.29. Chapter 2: Unit 2.19.
  10. 10.
    Dunn KW, Young PA (2006) Principles of multiphoton microscopy. Nephron Exp Nephrol 103:e33–e40CrossRefPubMedGoogle Scholar
  11. 11.
    Ettinger A, Wittmann T (2014) Fluorescence live cell imaging. Methods Cell Biol 123:77–94CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Fritzky L, Lagunoff D (2013) Advanced methods in fluorescence microscopy. Anal Cell Pathol (Amst) 36:5–17CrossRefGoogle Scholar
  13. 13.
    Goldman RD, Swedlow J, Spector DL (2010) Live cell imaging a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  14. 14.
    Gomes A, Fernandes E, Lima JL (2006) Use of fluorescence probes for detection of reactive nitrogen species: a review. J Fluoresc 16:119–139CrossRefPubMedGoogle Scholar
  15. 15.
    Gossen M, Bujard H (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci U S A 89:5547–5551CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Grecco HE, Imtiaz S, Zamir E (2016) Multiplexedimaging of intracellular protein networks. Cytometry A 89(8): 761-775. (Special Issue: High Throughput and High Content Imaging and Cellular Informatics (Part I)).
  17. 17.
    Hamers D, Van Voorst Vader L, Borst JW, Goedhart J (2014) Development of FRET biosensors for mammalian and plant systems. Protoplasma 251:333–347CrossRefPubMedGoogle Scholar
  18. 18.
    Han R, Li Z, Fan Y, Jiang Y (2013) Recent advances in super-resolution fluorescence imaging and its applications in biology. J Genet Genomics 40:583–595CrossRefPubMedGoogle Scholar
  19. 19.
    Heilemann M (2010) Fluorescence microscopy beyond the diffraction limit. J Biotechnol 149:243–251CrossRefPubMedGoogle Scholar
  20. 20.
    Heisig F (2007) Synthese neuer, funktionalisierter BODIPY-Fluorophore zur Fluoreszenzmarkierung von Membranrezeptor-Liganden. In: Pharmazeutisches Institut der Rheinischen Friedrich-Wilhelms-Universität Bonn, Bd. 228. Universitäts- und Landesbibliothek Bonn, Universität BonnGoogle Scholar
  21. 21.
    Herce HD, Casas-Delucchi CS, Cardoso MC (2013) New image colocalization coefficient for fluorescence microscopy to quantify (bio-)molecular interactions. J Microsc 249:184–194CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Hsu ST, Blaser G, Jackson SE (2009) The folding, stability and conformational dynamics of beta-barrel fluorescent proteins. Chem Soc Rev 38:2951–2965CrossRefPubMedGoogle Scholar
  23. 23.
    Huang L, Muyldermans S, Saerens D (2010) Nanobodies(R): proficient tools in diagnostics. Expert Rev Mol Diagn 10:777–785CrossRefPubMedGoogle Scholar
  24. 24.
    Ishikawa-Ankerhold HC, Ankerhold R, Drummen GP (2012) Advanced fluorescence microscopy techniques–FRAP, FLIP, FLAP, FRET and FLIM. Molecules 17:4047–4132CrossRefPubMedGoogle Scholar
  25. 25.
    Johnson I (2010) The molecular probes handbook a guide to fluorescent probes and labeling technologies. Life Technologies, Carlsbad, Calif. [u.a].Google Scholar
  26. 26.
    Jonkman J, Brown CM (2015) Any Way You Slice It-A Comparison of Confocal Microscopy Techniques. J Biomol Tech 26:54–65PubMedPubMedCentralGoogle Scholar
  27. 27.
    Jung T, Hohn A, Grune T (2010) Lipofuscin: detection and quantification by microscopic techniques. Methods Mol Biol 594:173–193CrossRefPubMedGoogle Scholar
  28. 28.
    Karpova TS, Baumann CT, He L, Wu X, Grammer A, Lipsky P, Hager GL, McNally JG (2003) Fluorescence resonance energy transfer from cyan to yellow fluorescent protein detected by acceptor photobleaching using confocal microscopy and a single laser. J Microsc 209:56–70CrossRefPubMedGoogle Scholar
  29. 29.
    Kenworthy AK (2001) Imaging protein-protein interactions using fluorescence resonance energy transfer microscopy. Methods 24:289–296CrossRefPubMedGoogle Scholar
  30. 30.
    Kobat D, Durst ME, Nishimura N, Wong AW, Schaffer CB, Xu C (2009) Deep tissue multiphoton microscopy using longer wavelength excitation. Opt Express 17:13354–13364CrossRefPubMedGoogle Scholar
  31. 31.
    Komatsu N, Aoki K, Yamada M, Yukinaga H, Fujita Y, Kamioka Y, Matsuda M (2011) Development of an optimized backbone of FRET biosensors for kinases and GTPases. Mol Biol Cell 22:4647–4656CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Lagache T, Sauvonnet N, Danglot L, Olivo-Marin JC (2015) Statistical analysis of molecule colocalization in bioimaging. Cytometry A 87:568–579CrossRefPubMedGoogle Scholar
  33. 33.
    Leitch AR, Bettenhausen B (1994) In situ-Hybridisierung. Spektrum Akad. Verl., Heidelberg [u.a].Google Scholar
  34. 34.
    Li IT, Pham E, Truong K (2006) Protein biosensors based on the principle of fluorescence resonance energy transfer for monitoring cellular dynamics. Biotechnol Lett 28:1971–1982CrossRefPubMedGoogle Scholar
  35. 35.
    Liehr T, Starke H, Weise A, Lehrer H, Claussen U (2004) Multicolor FISH probe sets and their applications. Histol Histopathol 19:229–237PubMedGoogle Scholar
  36. 36.
    Lipp P, Niggli E (1993) Microscopic spiral waves reveal positive feedback in subcellular calcium signaling. Biophys J 65(6):2272–2276CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    Lippincott-Schwartz J, Patterson GH (2003) Development and use of fluorescent protein markers in living cells. Science 300:87–91CrossRefPubMedGoogle Scholar
  38. 38.
    Loder MK, Tsuboi T, Rutter GA (2013) Live-cell imaging of vesicle trafficking and divalent metal ions by total internal reflection fluorescence (TIRF) microscopy. Methods Mol Biol 950:13–26PubMedGoogle Scholar
  39. 39.
    Maeda H (2008) Which are you watching, an individual reactive oxygen species or total oxidative stress? Ann N Y Acad Sci 1130:149–156CrossRefPubMedGoogle Scholar
  40. 40.
    Mai J, Trump S, Lehmann I, Attinger S (2013) Parameter importance in FRAP acquisition and analysis: a simulation approach. Biophys J 104:2089–2097CrossRefPubMedCentralPubMedGoogle Scholar
  41. 41.
    Masi A, Cicchi R, Carloni A, Pavone FS, Arcangeli A (2010) Optical methods in the study of protein-protein interactions. Adv Exp Med Biol 674:33–42CrossRefPubMedGoogle Scholar
  42. 42.
    Matz MV, Lukyanov KA, Lukyanov SA (2002) Family of the green fluorescent protein: journey to the end of the rainbow. Bioessays 24:953–959CrossRefPubMedGoogle Scholar
  43. 43.
    Menzel G, Heitkam T, Seibt KM, Nouroz F, Muller-Stoermer M, Heslop-Harrison JS, Schmidt T (2014) The diversification and activity of hAT transposons in Musa genomes. Chromosome Res 22:559–571CrossRefPubMedGoogle Scholar
  44. 44.
    Millard AC, Campagnola PJ, Mohler W, Lewis A, Loew LM (2003) Second harmonic imaging microscopy. Methods Enzymol 361:47–69CrossRefPubMedGoogle Scholar
  45. 45.
    Monici M (2005) Cell and tissue autofluorescence research and diagnostic applications. Biotechnol Annu Rev 11:227–256CrossRefPubMedGoogle Scholar
  46. 46.
    Moreton RB (1994) Optical methods for imaging ionic activities. Scanning Microsc Suppl 8:371–390PubMedGoogle Scholar
  47. 47.
    Mueller F, Karpova TS, Mazza D, McNally JG (2012) Monitoring dynamic binding of chromatin proteins in vivo by fluorescence recovery after photobleaching. Methods Mol Biol 833:153–176CrossRefPubMedGoogle Scholar
  48. 48.
    Mulisch M, Welsch U (2015) Romeis – Mikroskopische Technik. Springer, Berlin, HeidelbergCrossRefGoogle Scholar
  49. 49.
    O'Connor N, Silver RB (2007) Ratio imaging: practical considerations for measuring intracellular Ca2+ and pH in living cells. Methods Cell Biol 81:415–433CrossRefPubMedGoogle Scholar
  50. 50.
    Oreopoulos J, Berman R, Browne M (2014) Spinning-disk confocal microscopy: present technology and future trends. Methods Cell Biol 123:153–175CrossRefPubMedGoogle Scholar
  51. 51.
    Patterson GH 2011. Photoactivation and imaging of optical highlighter fluorescent proteins. Curr Protoc Cytom 57(1): 12.23.1–12.23.12. Chapter 12: Unit 12.23.
  52. 52.
    Peters DG, Yatsenko SA, Surti U, Rajkovic A (2015) Recent advances of genomic testing in perinatal medicine. Semin Perinatol 39:44–54CrossRefPubMedGoogle Scholar
  53. 53.
    Progatzky F, Dallman MJ, Lo Celso C (2013) From seeing to believing: labelling strategies for in vivo cell-tracking experiments. Interface Focus 3:20130001Google Scholar
  54. 54.
    Qu H, Xing W, Wu F, Wang Y (2016) Rapid and inexpensive method of loading fluorescent dye into pollen tubes and root hairs. PLoS One 11:e0152320CrossRefPubMedCentralPubMedGoogle Scholar
  55. 55.
    Rocchetti A, Hawes C, Kriechbaumer V (2014) Fluorescent labelling of the actin cytoskeleton in plants using a cameloid antibody. Plant Methods 10:12CrossRefPubMedCentralPubMedGoogle Scholar
  56. 56.
    Rössler A, Skillas G, Pratsinis SE (2001) Nanopartikel — Materialien der Zukunft: Maßgeschneiderte Werkstoffe. Chemie in unserer Zeit 35:32–41CrossRefGoogle Scholar
  57. 57.
    Rubart M (2004) Two-photon microscopy of cells and tissue. Circ Res 95:1154–1166CrossRefPubMedGoogle Scholar
  58. 58.
    Sample V, Newman RH, Zhang J (2009) The structure and function of fluorescent proteins. Chem Soc Rev 38:2852–2864CrossRefPubMedGoogle Scholar
  59. 59.
    Schermelleh L, Heintzmann R, Leonhardt H (2010) A guide to super-resolution fluorescence microscopy. J Cell Biol 190:165–175CrossRefPubMedCentralPubMedGoogle Scholar
  60. 60.
    Schlatter S, Senn C, Fussenegger M (2003) Modulation of translation-initiation in CHO-K1 cells by rapamycin-induced heterodimerization of engineered eIF4G fusion proteins. Biotechnol Bioeng 83:210–225CrossRefPubMedGoogle Scholar
  61. 61.
    Schmidt A, Wiesner B, Schulein R, Teichmann A (2014) Use of Kaede and Kikume green-red fusions for live cell imaging of G protein-coupled receptors. Methods Mol Biol 1174:139–156CrossRefPubMedGoogle Scholar
  62. 62.
    Schnell SA, Staines WA, Wessendorf MW (1999) Reduction of lipofuscin-like autofluorescence in fluorescently labeled tissue. J Histochem Cytochem 47:719–730CrossRefPubMedGoogle Scholar
  63. 63.
    Schrock E, Du Manoir S, Veldman T, Schoell B, Wienberg J, Ferguson-Smith MA, Ning Y, Ledbetter DH, Bar-Am I, Soenksen D, Garini Y, Ried T (1996) Multicolor spectral karyotyping of human chromosomes. Science 273:494–497CrossRefPubMedGoogle Scholar
  64. 64.
    Schultz C, Vajanaphanich M, Harootunian AT, Sammak PJ, Barrett KE, Tsien RY (1993) Acetoxymethyl esters of phosphates, enhancement of the permeability and potency of cAMP. J Biol Chem 268:6316–6322PubMedGoogle Scholar
  65. 65.
    Shimomura O (2005) The discovery of aequorin and green fluorescent protein. J Microsc 217: 1–15CrossRefPubMedGoogle Scholar
  66. 66.
    Speicher MR, Gwyn Ballard S, Ward DC (1996) Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nat Genet 12:368–375CrossRefPubMedGoogle Scholar
  67. 67.
    Sprenger JU, Perera RK, Gotz KR, Nikolaev VO (2012) FRET microscopy for real-time monitoring of signaling events in live cells using unimolecular biosensors. J Vis Exp 20;(66): e4081, 1–7.
  68. 68.
    Sugita S, Asanuma H, Hasegawa T (2016) Diagnostic use of fluorescence in situ hybridization in expert review in a phase 2 study of trabectedin monotherapy in patients with advanced, translocation-related sarcoma. Diagn Pathol 11:37CrossRefPubMedCentralPubMedGoogle Scholar
  69. 69.
    Tam J, Merino D (2015) Stochastic optical reconstruction microscopy (STORM) in comparison with stimulated emission depletion (STED) and other imaging methods. J Neurochem. 135:643–658CrossRefPubMedGoogle Scholar
  70. 70.
    Tomura M, Yoshida N, Tanaka J, Karasawa S, Miwa Y, Miyawaki A, Kanagawa O (2008) Monitoring cellular movement in vivo with photoconvertible fluorescence protein „Kaede“ transgenic mice. Proc Natl Acad Sci U S A 105:10871–10876CrossRefPubMedCentralPubMedGoogle Scholar
  71. 71.
    Trache A, Meininger GA (2008) Total internal reflection fluorescence (TIRF) microscopy. Curr Protoc Microbiol. Chapter 2: Unit 2A.2.1–2A.2.22 10(1): 2A.2.1–2A.2.22.
  72. 72.
    Volpi EV, Bridger JM (2008) FISH glossary: an overview of the fluorescence in situ hybridization technique. Biotechniques 45:385–386, 388, 390 passimCrossRefPubMedGoogle Scholar
  73. 73.
    Wang M, Huang TZ, Li J, Wang YP (2016) A patch-based tensor decomposition algorithm for M-FISH image classification. Cytometry A 91(6): 622–632. (Special Issue: Computer‐Aided Diagnostics in Digital Pathology).
  74. 74.
    Wiedenmann J, Nienhaus GU (2006) Live-cell imaging with EosFP and other photoactivatable marker proteins of the GFP family. Expert Rev Proteomics 3:361–374CrossRefPubMedGoogle Scholar
  75. 75.
    Wiedenmann J, Oswald F, Nienhaus GU (2009) Fluorescent proteins for live cell imaging: opportunities, limitations, and challenges. IUBMB Life 61:1029–1042CrossRefPubMedGoogle Scholar
  76. 76.
    Wustner D, Solanko LM, Lund FW, Sage D, Schroll HJ, Lomholt MA (2012) Quantitative fluorescence loss in photobleaching for analysis of protein transport and aggregation. BMC Bioinformatics 13:296CrossRefPubMedCentralPubMedGoogle Scholar
  77. 77.
    Young MD, Field JJ, Sheetz KE, Bartels RA, Squier J (2015) A pragmatic guide to multiphoton microscope design. Adv Opt Photonics 7:276–378CrossRefPubMedCentralPubMedGoogle Scholar
  78. 78.
    Zadran S, Standley S, Wong K, Otiniano E, Amighi A, Baudry M (2012) Fluorescence resonance energy transfer (FRET)-based biosensors: visualizing cellular dynamics and bioenergetics. Appl Microbiol Biotechnol 96:895–902CrossRefPubMedGoogle Scholar
  79. 79.
    Zimmermann T (2005) Spectral imaging and linear unmixing in light microscopy. Adv Biochem Eng Biotechnol. 95:245–265PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  • Sabine Schmitz
    • 1
  • Christine Desel
    • 2
  1. 1.JülichDeutschland
  2. 2.KielDeutschland

Personalised recommendations