Management of Cartilage Injuries in Handball

  • Renato Andrade
  • Rogério Pereira
  • Ricardo Bastos
  • Cátia Saavedra
  • Hélder Pereira
  • Lior Laver
  • Philippe Landreau
  • João Espregueira-MendesEmail author


Articular cartilage lesions of the knee are complex injuries, posing a serious threat to the handball player competitive career. Returning to competition at the pre-injury sports activity level as early and as safe as possible is the ultimate goal to be achieved. There is no consensus on the best surgical technique, and clinical algorithms have been proposed to manage the different articular cartilage defects. The chapter will also overview and summarize the available conservative and surgical management options and stepwise criteria-based rehabilitation strategy and return to play considerations in handball players with focal cartilage defects and osteochondral lesions.


Articular Cartilage Handball Rehabilitation Return to play 


  1. 1.
    Giroto N, Hespanhol Junior L, Gomes M, Lopes A. Incidence and risk factors of injuries in Brazilian elite handball players: a prospective cohort study. Scand J Med Sci Sports. 2017;27:195–202.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Myklebust G, Maehlum S, Engebretsen L, Strand T, Solheim E. Registration of cruciate ligament injuries in Norwegian top level team handball. A prospective study covering two seasons. Scand J Med Sci Sports. 1997;7:289–92.CrossRefPubMedGoogle Scholar
  3. 3.
    Seil R, Rupp S, Tempelhof S, Kohn D. Sports injuries in team handball a one-year prospective study of sixteen men’s senior teams of a superior nonprofessional level. Am J Sports Med. 1998;26:681–7.CrossRefPubMedGoogle Scholar
  4. 4.
    Laver L, Myklebust G. Handball injuries: epidemiology and injury characterization. In: Doral M, Karlsson J, editors. Sports injuries: prevention, diagnosis, treatment and rehabilitation. Berlin: Springer; 2015. p. 2781–805.CrossRefGoogle Scholar
  5. 5.
    Bere T, Alonso J-M, Wangensteen A, Bakken A, Eirale C, Dijkstra HP, et al. Injury and illness surveillance during the 24th Men’s Handball World Championship 2015 in Qatar. Br J Sports Med. 2015;49:1151–6.CrossRefPubMedGoogle Scholar
  6. 6.
    Heijink A, Gomoll AH, Madry H, Drobnič M, Filardo G, Espregueira-Mendes J, et al. Biomechanical considerations in the pathogenesis of osteoarthritis of the knee. Knee Surg Sports Traumatol Arthrosc. 2012;20:423–35.PubMedCrossRefGoogle Scholar
  7. 7.
    Vannini F, Spalding T, Andriolo L, Berruto M, Denti M, Espregueira-Mendes J, et al. Sport and early osteoarthritis: the role of sport in aetiology, progression and treatment of knee osteoarthritis. Knee Surg Sports Traumatol Arthrosc. 2016;24:1786–96.PubMedCrossRefGoogle Scholar
  8. 8.
    Andrade R, Vasta S, Papalia R, Pereira H, Oliveira JM, Reis RL, et al. Prevalence of articular cartilage lesions and surgical clinical outcomes in football (soccer) players’ knees: a systematic review. Arthroscopy. 2016;32:1466–77.PubMedCrossRefGoogle Scholar
  9. 9.
    Gomoll AH, Minas T. The quality of healing: articular cartilage. Wound Repair Regen. 2014;22:30–8.PubMedCrossRefGoogle Scholar
  10. 10.
    McAdams TR, Mithoefer K, Scopp JM, Mandelbaum BR. Articular cartilage injury in athletes. Cartilage. 2010;1:165–79.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Steinwachs M, Engebretsen L, Brophy R. Scientific evidence base for cartilage injury and repair in the athlete. Cartilage. 2012;3:11S–7S.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Årøen A, Løken S, Heir S, Alvik E, Ekeland A, Granlund OG, et al. Articular cartilage lesions in 993 consecutive knee arthroscopies. Am J Sports Med. 2004;32:211–5.PubMedCrossRefGoogle Scholar
  13. 13.
    Curl WW, Krome J, Gordon ES, Rushing J, Smith BP, Poehling GG. Cartilage injuries: a review of 31,516 knee arthroscopies. Arthroscopy. 1997;13:456–60.PubMedCrossRefGoogle Scholar
  14. 14.
    Flanigan DC, Harris JD, Trinh TQ, Siston RA, Brophy RH. Prevalence of chondral defects in athletes’ knees: a systematic review. Med Sci Sports Exerc. 2010;42:1795–801.PubMedCrossRefGoogle Scholar
  15. 15.
    L’Hermette M, Polle G, Tourny-Chollet C, Dujardin F. Hip passive range of motion and frequency of radiographic hip osteoarthritis in former elite handball players. Br J Sports Med. 2006;40:45–9.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Røtterud JH, Sivertsen EA, Forssblad M, Engebretsen L, Årøen A. Effect of gender and sports on the risk of full-thickness articular cartilage lesions in anterior cruciate ligament–injured knees: a nationwide cohort study from Sweden and Norway of 15 783 patients. Am J Sports Med. 2011;39:1387–94.CrossRefPubMedGoogle Scholar
  17. 17.
    Granan L-P, Inacio MC, Maletis GB, Funahashi TT, Engebretsen L. Sport-specific injury pattern recorded during anterior cruciate ligament reconstruction. Am J Sports Med. 2013;41:2814–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Hambly K, Poomsalood S, Mundy E. Return to running following knee osteochondral repair using an anti-gravity treadmill: a case report. Phys Ther Sport. 2017;26:35–40.PubMedCrossRefGoogle Scholar
  19. 19.
    Erggelet C, Mandelbaum BR. Principles of cartilage repair. New York: Springer Science & Business Media; 2008.Google Scholar
  20. 20.
    Gorsline RT, Kaeding CC. The use of NSAIDs and nutritional supplements in athletes with osteoarthritis: prevalence, benefits, and consequences. Clin Sports Med. 2005;24:71–82.PubMedCrossRefGoogle Scholar
  21. 21.
    Pánics G, Hangody LR, Baló E, Vásárhelyi G, Gál T, Hangody L. Osteochondral autograft and mosaicplasty in the football (soccer) athlete. Cartilage. 2012;3:25S–30S.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Tamburrino P, Castellacci E. Intra-articular injections of HYADD4-G in male professional soccer players with traumatic or degenerative knee chondropathy. A pilot, prospective study. J Sports Med Phys Fitness. 2016;56:1534.PubMedGoogle Scholar
  23. 23.
    Papalia R, Zampogna B, Russo F, Vasta S, Tirindelli M, Nobile C, et al. Comparing hybrid hyaluronic acid with PRP in end career athletes with degenerative cartilage lesions of the knee. J Biol Regul Homeost Agents. 2016;30(Suppl 1):17–23.PubMedGoogle Scholar
  24. 24.
    Bekkers J, de Windt TS, Brittberg M, Saris D. Cartilage repair in football (soccer) athletes what evidence leads to which treatment? A critical review of the literature. Cartilage. 2012;3:43S–9S.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Harris JD, Brophy RH, Siston RA, Flanigan DC. Treatment of chondral defects in the athlete’s knee. Arthroscopy. 2010;26:841–52.PubMedCrossRefGoogle Scholar
  26. 26.
    Gracitelli GC, Moraes VY, Franciozi CE, Luzo MV, Belloti JC. Surgical interventions (microfracture, drilling, mosaicplasty, and allograft transplantation) for treating isolated cartilage defects of the knee in adults. Cochrane Libr. 2016.
  27. 27.
    Mundi R, Bedi A, Chow L, Crouch S, Simunovic N, Sibilsky Enselman E, et al. Cartilage restoration of the knee: a systematic review and meta-analysis of level 1 studies. Am J Sports Med. 2016;44:1888–95.PubMedCrossRefGoogle Scholar
  28. 28.
    Riboh JC, Cvetanovich GL, Cole BJ, Yanke AB. Comparative efficacy of cartilage repair procedures in the knee: a network meta-analysis. Knee Surg Sports Traumatol Arthrosc. 2016.
  29. 29.
    Kon E, Filardo G, Berruto M, Benazzo F, Zanon G, Della Villa S, et al. Articular cartilage treatment in high-level male soccer players a prospective comparative study of arthroscopic second-generation autologous chondrocyte implantation versus microfracture. Am J Sports Med. 2011;39:2549–57.PubMedCrossRefGoogle Scholar
  30. 30.
    Schrock JB, Kraeutler MJ, Houck DA, McQueen MB, McCarty EC. A cost-effectiveness analysis of surgical treatment modalities for Chondral lesions of the knee: microfracture, Osteochondral autograft transplantation, and autologous chondrocyte implantation. Orthop J Sports Med. 2017;5:2325967117704634.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Bekkers JE, Inklaar M, Saris DB. Treatment selection in articular cartilage lesions of the knee a systematic review. Am J Sports Med. 2009;37:148S–55S.PubMedCrossRefGoogle Scholar
  32. 32.
    Lorenz DS, Reiman MP. Performance enhancement in the terminal phases of rehabilitation. Sports Health. 2011;3:470–80.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Gobbi A, Karnatzikos G, Kumar A. Long-term results after microfracture treatment for full-thickness knee chondral lesions in athletes. Knee Surg Sports Traumatol Arthrosc. 2014;22:1986–96.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Grindem H, Snyder-Mackler L, Moksnes H, Engebretsen L, Risberg MA. Simple decision rules can reduce reinjury risk by 84% after ACL reconstruction: the Delaware-Oslo ACL cohort study. Br J Sports Med. 2016;50:804–8.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Mithoefer K, Williams RJ, Warren RF, Wickiewicz TL, Marx RG. High-impact athletics after knee articular cartilage repair a prospective evaluation of the microfracture technique. Am J Sports Med. 2006;34:1413–8.CrossRefPubMedGoogle Scholar
  36. 36.
    Mithöfer K, Peterson L, Mandelbaum BR, Minas T. Articular cartilage repair in soccer players with autologous chondrocyte transplantation functional outcome and return to competition. Am J Sports Med. 2005;33:1639–46.CrossRefPubMedGoogle Scholar
  37. 37.
    Peterson L, Vasiliadis HS, Brittberg M, Lindahl A. Autologous chondrocyte implantation a long-term follow-up. Am J Sports Med. 2010;38:1117–24.CrossRefPubMedGoogle Scholar
  38. 38.
    Mithoefer K, Hambly K, Della Villa S, Silvers H, Mandelbaum BR. Return to sports participation after articular cartilage repair in the knee scientific evidence. Am J Sports Med. 2009;37:167S–76S.CrossRefPubMedGoogle Scholar
  39. 39.
    Mithoefer K, Steadman RJ. Microfracture in football (soccer) players a case series of professional athletes and systematic review. Cartilage. 2012;3:18S–24S.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Murray IR, Benke MT, Mandelbaum BR. Management of knee articular cartilage injuries in athletes: chondroprotection, chondrofacilitation, and resurfacing. Knee Surg Sports Traumatol Arthrosc. 2016;24:1617–26.PubMedCrossRefGoogle Scholar
  41. 41.
    Tom Minas MDM, Arvind Von Keudell M, Bryant T, Gomoll AH. The John Insall award: a minimum 10-year outcome study of autologous chondrocyte implantation. Clin Orthop Relat Res. 2014;472:41.PubMedCrossRefGoogle Scholar
  42. 42.
    Cole BJ, Pascual-Garrido C, Grumet RC. Surgical management of articular cartilage defects in the knee. J Bone Joint Surg Am. 2009;91:1778–90.PubMedGoogle Scholar
  43. 43.
    de Windt TS, Saris DB. Treatment Algorithm for articular cartilage repair of the knee: towards patient profiling using evidence-based tools. In: Shetty A, Kim SJ, Nakamura N, Brittberg M, editors. Techniques in cartilage repair surgery. Berlin: Springer; 2014. p. 23–31.CrossRefGoogle Scholar
  44. 44.
    Gomoll AH, Farr J, Gillogly SD, Kercher J, Minas T. Surgical management of articular cartilage defects of the knee. J Bone Joint Surg Am. 2010;92:2470–90.PubMedGoogle Scholar
  45. 45.
    Tetteh ES, Bajaj S, Ghodadra NS, Cole BJ. The basic science and surgical treatment options for articular cartilage injuries of the knee. J Orthop Sports Phys Ther. 2012;42:243–53.PubMedCrossRefGoogle Scholar
  46. 46.
    Oussedik S, Tsitskaris K, Parker D. Treatment of articular cartilage lesions of the knee by microfracture or autologous chondrocyte implantation: a systematic review. Arthroscopy. 2015;31:732–44.PubMedCrossRefGoogle Scholar
  47. 47.
    Bedi A, Feeley BT, Williams RJ. Management of articular cartilage defects of the knee. J Bone Joint Surg Am. 2010;92:994–1009.PubMedCrossRefGoogle Scholar
  48. 48.
    Krych AJ, Gobbi A, Lattermann C, Nakamura N. Articular cartilage solutions for the knee: present challenges and future direction. J ISAKOS. 2016;1:93–104.CrossRefGoogle Scholar
  49. 49.
    Mithoefer K, Williams RJ, Warren RF, Potter HG, Spock CR, Jones EC, et al. The microfracture technique for the treatment of articular cartilage lesions in the knee. J Bone Joint Surg Am. 2005;87:1911–20.PubMedCrossRefGoogle Scholar
  50. 50.
    Steadman JR, Rodkey WG, Rodrigo JJ. Microfracture: surgical technique and rehabilitation to treat chondral defects. Clin Orthop Relat Res. 2001;391:S362–9.CrossRefGoogle Scholar
  51. 51.
    Steadman JR, Briggs KK, Rodrigo JJ, Kocher MS, Gill TJ, Rodkey WG. Outcomes of microfracture for traumatic chondral defects of the knee: average 11-year follow-up. Arthroscopy. 2003;19:477–84.PubMedCrossRefGoogle Scholar
  52. 52.
    Carey JL. Fibrocartilage following microfracture is not as robust as native articular cartilage: commentary on an article by Aaron J Krych, MD, et al: “Activity levels are higher after osteochondral autograft transfer mosaicplasty than after microfracture for articular cartilage defects of the knee. A retrospective comparative study”. J Bone Joint Surg Am. 2012;94:e80.PubMedCrossRefGoogle Scholar
  53. 53.
    Case JM, Scopp JM. Treatment of articular cartilage defects of the knee with microfracture and enhanced microfracture techniques. Sports Med Arthrosc. 2016;24:63–8.PubMedCrossRefGoogle Scholar
  54. 54.
    Krych AJ, Harnly HW, Rodeo SA, Williams RJ. Activity levels are higher after osteochondral autograft transfer mosaicplasty than after microfracture for articular cartilage defects of the knee. J Bone Joint Surg Am. 2012;94:971–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Bark S, Piontek T, Behrens P, Mkalaluh S, Varoga D, Gille J. Enhanced microfracture techniques in cartilage knee surgery: fact or fiction? World J Orthop. 2014;5:444–9.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Goyal D, Keyhani S, Lee EH, Hui JHP. Evidence-based status of microfracture technique: a systematic review of level I and II studies. Arthroscopy. 2013;29:1579–88.PubMedCrossRefGoogle Scholar
  57. 57.
    Negrin L, Kutscha-Lissberg F, Gartlehner G, Vecsei V. Clinical outcome after microfracture of the knee: a meta-analysis of before/after-data of controlled studies. Int Orthop. 2012;36:43–50.PubMedCrossRefGoogle Scholar
  58. 58.
    Cole BJ, Kercher JS, Mithoefer K, Gill TJ, Cole BJ, Williams RJ, et al. Clinical outcome and return to competition after microfracture in the athlete’s knee: an evidence-based systematic review. Cartilage. 2010;1:113–20.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Harris JD, Walton DM, Erickson BJ, Verma NN, Abrams GD, Bush-Joseph CA, et al. Return to sport and performance after microfracture in the knees of National Basketball Association players. Orthop J Sports Med. 2013;1.
  60. 60.
    Namdari S, Baldwin K, Anakwenze O, Park M-J, Russell Huffman G, Sennett BJ. Results and performance after microfracture in National Basketball Association athletes. Am J Sports Med. 2009;37:943–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Buda R, Vannini F, Cavallo M, Grigolo B, Cenacchi A, Giannini S. Osteochondral lesions of the knee: a new one-step repair technique with bone-marrow-derived cells. J Bone Joint Surg Am. 2010;92:2–11.PubMedCrossRefGoogle Scholar
  62. 62.
    Gille J, Behrens P, Volpi P, De Girolamo L, Reiss E, Zoch W, et al. Outcome of Autologous Matrix Induced Chondrogenesis (AMIC) in cartilage knee surgery: data of the AMIC Registry. Arch Orthop Trauma Surg. 2013;133:87–93.PubMedCrossRefGoogle Scholar
  63. 63.
    Koh Y-G, Kwon O-R, Kim Y-S, Choi Y-J, Tak D-H. Adipose-derived mesenchymal stem cells with microfracture versus microfracture alone: 2-year follow-up of a prospective randomized trial. Arthroscopy. 2016;32:97–109.PubMedCrossRefGoogle Scholar
  64. 64.
    Kusano T, Jakob RP, Gautier E, Magnussen RA, Hoogewoud H, Jacobi M. Treatment of isolated chondral and osteochondral defects in the knee by autologous matrix-induced chondrogenesis (AMIC). Knee Surg Sports Traumatol Arthrosc. 2012;20:2109–15.PubMedCrossRefGoogle Scholar
  65. 65.
    Siclari A, Mascaro G, Gentili C, Cancedda R, Boux E. A cell-free scaffold-based cartilage repair provides improved function hyaline-like repair at one year. Clin Orthop Relat Res. 2012;470:910–9.PubMedCrossRefGoogle Scholar
  66. 66.
    Sofu H, Kockara N, Oner A, Camurcu Y, Issın A, Sahin V. Results of hyaluronic acid–based cell-free scaffold application in combination with microfracture for the treatment of Osteochondral lesions of the knee: 2-year comparative study. Arthroscopy. 2016;33:209–16.PubMedCrossRefGoogle Scholar
  67. 67.
    Della Villa S, Boldrini L, Ricci M, Danelon F, Snyder-Mackler L, Nanni G, et al. Clinical outcomes and return-to-sports participation of 50 soccer players after anterior cruciate ligament reconstruction through a sport-specific rehabilitation protocol. Sports Health. 2012;4:17–24.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Agneskirchner JD, Brucker P, Burkart A, Imhoff AB. Large osteochondral defects of the femoral condyle: press-fit transplantation of the posterior femoral condyle (MEGA-OATS). Knee Surg Sports Traumatol Arthrosc. 2002;10:160–8.PubMedCrossRefGoogle Scholar
  69. 69.
    Jungmann P, Brucker P, Baum T, Link T, Foerschner F, Minzlaff P, et al. Bilateral cartilage T2 mapping 9 years after Mega-OATS implantation at the knee: a quantitative 3T MRI study. Osteoarthr Cartil. 2015;23:2119–28.PubMedCrossRefGoogle Scholar
  70. 70.
    Andrade R, Vasta S, Pereira R, Pereira H, Papalia R, Karahan M, et al. Knee donor-site morbidity after mosaicplasty—a systematic review. J Exp Orthop. 2016;3:31.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Espregueira-Mendes J, Pereira H, Sevivas N, Varanda P, Da Silva MV, Monteiro A, et al. Osteochondral transplantation using autografts from the upper tibio-fibular joint for the treatment of knee cartilage lesions. Knee Surg Sports Traumatol Arthrosc. 2012;20:1136–42.PubMedCrossRefGoogle Scholar
  72. 72.
    Goyal D, Keyhani S, Goyal A, Lee EH, Hui JH, Vaziri AS. Evidence-based status of osteochondral cylinder transfer techniques: a systematic review of level I and II studies. Arthroscopy. 2014;30:497–505.PubMedCrossRefGoogle Scholar
  73. 73.
    Lynch TS, Patel RM, Benedick A, Amin NH, Jones MH, Miniaci A. Systematic review of autogenous osteochondral transplant outcomes. Arthroscopy. 2015;31:746–54.PubMedCrossRefGoogle Scholar
  74. 74.
    Pareek A, Reardon PJ, Maak TG, Levy BA, Stuart MJ, Krych AJ. Long-term outcomes after osteochondral autograft transfer: a systematic review at mean follow-up of 10.2 years. Arthroscopy. 2016;32:1174–84.PubMedCrossRefGoogle Scholar
  75. 75.
    Assenmacher AT, Pareek A, Reardon PJ, Macalena JA, Stuart MJ, Krych AJ. Long-term outcomes after Osteochondral allograft: a systematic review at long-term follow-up of 12.3 years. Arthroscopy. 2016;32:2160–8.PubMedCrossRefGoogle Scholar
  76. 76.
    Krych AJ, Robertson CM, Williams RJ III. Return to athletic activity after osteochondral allograft transplantation in the knee. Am J Sports Med. 2012;40:1053–9.PubMedCrossRefGoogle Scholar
  77. 77.
    Levy YD, Görtz S, Pulido PA, McCauley JC, Bugbee WD. Do fresh osteochondral allografts successfully treat femoral condyle lesions? Clin Orthop Relat Res. 2013;471:231–7.PubMedCrossRefGoogle Scholar
  78. 78.
    Frank RM, Lee S, Levy D, Poland S, Smith M, Scalise N, et al. Osteochondral allograft transplantation of the knee: analysis of failures at 5 years. Am J Sports Med. 2016;45:864–74.CrossRefGoogle Scholar
  79. 79.
    Gracitelli GC, Meric G, Pulido PA, McCauley JC, Bugbee WD. Osteochondral allograft transplantation for knee lesions after failure of cartilage repair surgery. Cartilage. 2015;6:98–105.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994;331:889–95.PubMedCrossRefGoogle Scholar
  81. 81.
    Roberts S, McCall IW, Darby AJ, Menage J, Evans H, Harrison PE, et al. Autologous chondrocyte implantation for cartilage repair: monitoring its success by magnetic resonance imaging and histology. Arthritis Res Ther. 2002;5:R60.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Hinckel BB, Gomoll AH. Autologous chondrocytes and next-generation matrix-based autologous chondrocyte implantation. Clin Sports Med. 2017;36:525–48.PubMedCrossRefGoogle Scholar
  83. 83.
    Henderson I, Lavigne P, Valenzuela H, Oakes B. Autologous chondrocyte implantation: superior biologic properties of hyaline cartilage repairs. Clin Orthop Relat Res. 2007;455:253–61.PubMedCrossRefGoogle Scholar
  84. 84.
    Horas U, Pelinkovic D, Herr G, Aigner T, Schnettler R. Autologous chondrocyte implantation and osteochondral cylinder transplantation in cartilage repair of the knee joint. J Bone Joint Surg Am. 2003;85:185–92.PubMedCrossRefGoogle Scholar
  85. 85.
    Bentley G, Biant L, Vijayan S, Macmull S, Skinner J, Carrington R. Minimum ten-year results of a prospective randomised study of autologous chondrocyte implantation versus mosaicplasty for symptomatic articular cartilage lesions of the knee. J Bone Joint Surg Br. 2012;94:504–9.PubMedCrossRefGoogle Scholar
  86. 86.
    Knutsen G, Drogset JO, Engebretsen L, Grøntvedt T, Ludvigsen TC, Løken S, et al. A randomized Multicenter trial comparing autologous chondrocyte implantation with microfracture. J Bone Joint Surg Am. 2016;98:1332–9.PubMedCrossRefGoogle Scholar
  87. 87.
    Niemeyer P, Salzmann G, Feucht M, Pestka J, Porichis S, Ogon P, et al. First-generation versus second-generation autologous chondrocyte implantation for treatment of cartilage defects of the knee: a matched-pair analysis on long-term clinical outcome. Int Orthop. 2014;38:2065–70.PubMedCrossRefGoogle Scholar
  88. 88.
    Dewan AK, Gibson MA, Elisseeff JH, Trice ME. Evolution of autologous chondrocyte repair and comparison to other cartilage repair techniques. Biomed Res Int. 2014.
  89. 89.
    Basad E, Wissing FR, Fehrenbach P, Rickert M, Steinmeyer J, Ishaque B. Matrix-induced autologous chondrocyte implantation (MACI) in the knee: clinical outcomes and challenges. Knee Surg Sports Traumatol Arthrosc. 2015;23:3729–35.PubMedCrossRefGoogle Scholar
  90. 90.
    Ebert JR, Fallon M, Wood DJ, Janes GC. A prospective clinical and radiological evaluation at 5 years after arthroscopic matrix-induced autologous chondrocyte implantation. Am J Sports Med. 2017;45:59.PubMedCrossRefGoogle Scholar
  91. 91.
    Meyerkort D, Ebert JR, Ackland TR, Robertson WB, Fallon M, Zheng M, et al. Matrix-induced autologous chondrocyte implantation (MACI) for chondral defects in the patellofemoral joint. Knee Surg Sports Traumatol Arthrosc. 2014;22:2522–30.PubMedCrossRefGoogle Scholar
  92. 92.
    Brophy RH, Zeltser D, Wright RW, Flanigan D. Anterior cruciate ligament reconstruction and concomitant articular cartilage injury: incidence and treatment. Arthroscopy. 2010;26:112–20.PubMedCrossRefGoogle Scholar
  93. 93.
    Gomoll A, Filardo G, De Girolamo L, Esprequeira-Mendes J, Marcacci M, Rodkey W, et al. Surgical treatment for early osteoarthritis. Part I: cartilage repair procedures. Knee Surg Sports Traumatol Arthrosc. 2012;20:450–66.PubMedCrossRefGoogle Scholar
  94. 94.
    Mandelbaum BR, Bartolozzi A, Carney B. A systematic approach to reconstruction of neglected tears of the patellar tendon: a case report. Clin Orthop Relat Res. 1988;235:268–71.Google Scholar
  95. 95.
    Bisson LJ, Kluczynski MA, Wind WM, Fineberg MS, Bernas GA, Rauh MA, et al. Patient outcomes after observation versus debridement of unstable Chondral lesions during partial Meniscectomy: the Chondral lesions and meniscus procedures (ChAMP) randomized controlled trial. J Bone Joint Surg Am. 2017;99:1078–85.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Hambly K, Silvers HJ, Steinwachs M. Rehabilitation after articular cartilage repair of the knee in the football (soccer) player. Cartilage. 2012;3:50S–6S.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Mithoefer K, Hambly K, Logerstedt D, Ricci M, Silvers H, Villa SD. Current concepts for rehabilitation and return to sport after knee articular cartilage repair in the athlete. J Orthop Sports Phys Ther. 2012;42:254–73.PubMedCrossRefGoogle Scholar
  98. 98.
    Stone JY, Schaal R. Postoperative management of patients with articular cartilage repair. J Knee Surg. 2012;25:207–12.PubMedCrossRefGoogle Scholar
  99. 99.
    Alford JW, Lewis P, Kang RW, Cole BJ. Rapid progression of chondral disease in the lateral compartment of the knee following meniscectomy. Arthroscopy. 2005;21:1505–9.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Mariani PP, Garofalo R, Margheritini F. Chondrolysis after partial lateral meniscectomy in athletes. Knee Surg Sports Traumatol Arthrosc. 2008;16:574–80.PubMedCrossRefGoogle Scholar
  101. 101.
    Della Villa S, Kon E, Filardo G, Ricci M, Vincentelli F, Delcogliano M, et al. Does intensive rehabilitation permit early return to sport without compromising the clinical outcome after arthroscopic autologous chondrocyte implantation in highly competitive athletes? Am J Sports Med. 2010;38:68–77.PubMedCrossRefGoogle Scholar
  102. 102.
    Hambly K, Bobic V, Wondrasch B, Van Assche D, Marlovits S. Autologous chondrocyte implantation postoperative care and rehabilitation science and practice. Am J Sports Med. 2006;34:1020–38.PubMedCrossRefGoogle Scholar
  103. 103.
    Howard JS, Mattacola CG, Romine SE, Lattermann C. Continuous passive motion, early weight bearing, and active motion following knee articular cartilage repair evidence for clinical practice. Cartilage. 2010;1:276–86.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Jakobsen RB, Engebretsen L, Slauterbeck JR. An analysis of the quality of cartilage repair studies. J Bone Joint Surg Am. 2005;87:2232–9.PubMedGoogle Scholar
  105. 105.
    Reinold MM, Wilk KE, Macrina LC, Dugas JR, Cain EL. Current concepts in the rehabilitation following articular cartilage repair procedures in the knee. J Orthop Sports Phys Ther. 2006;36:774–94.PubMedCrossRefGoogle Scholar
  106. 106.
    Shapiro F, Koide S, Glimcher M. Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. J Bone Joint Surg Am. 1993;75:532–53.PubMedCrossRefGoogle Scholar
  107. 107.
    Shortkroff S, Barone L, Hsu H-P, Wrenn C, Gagne T, Chi T, et al. Healing of chondral and osteochondral defects in a canine model: the role of cultured chondrocytes in regeneration of articular cartilage. Biomaterials. 1996;17:147–54.PubMedCrossRefGoogle Scholar
  108. 108.
    Ebert J, Robertson W, Lloyd DG, Zheng M, Wood D, Ackland T. Traditional vs accelerated approaches to post-operative rehabilitation following matrix-induced autologous chondrocyte implantation (MACI): comparison of clinical, biomechanical and radiographic outcomes. Osteoarthr Cartil. 2008;16:1131–40.PubMedCrossRefGoogle Scholar
  109. 109.
    Wondrasch B, Risberg M-A, Zak L, Marlovits S, Aldrian S. Effect of accelerated Weightbearing after matrix-associated autologous chondrocyte implantation on the femoral condyle a prospective, randomized controlled study presenting MRI-based and clinical outcomes after 5 years. Am J Sports Med. 2015;43:146–53.PubMedCrossRefGoogle Scholar
  110. 110.
    Sa D, Thornley P, Niroopan G, Khan M, McCarthy C, Simunovic N, et al. No difference in outcome between early versus delayed weight-bearing following microfracture surgery of the hip, knee or ankle: a systematic review of outcomes and complications. J ISAKOS. 2016.
  111. 111.
    Gokeler A, Welling W, Benjaminse A, Lemmink K, Seil R, Zaffagnini S. A critical analysis of limb symmetry indices of hop tests in athletes after anterior cruciate ligament reconstruction: a case control study. Orthop Traumatol Surg Res. 2017;103:947–51.PubMedCrossRefGoogle Scholar
  112. 112.
    Wellsandt E, Failla MJ, Snyder-Mackler L. Limb symmetry indexes can overestimate knee function after anterior cruciate ligament injury. J Orthop Sports Phys Ther. 2017;47:334–8.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Nagelli CV, Hewett TE. Should return to sport be delayed until 2 years after anterior cruciate ligament reconstruction? Biological and functional considerations. Sports Med. 2016;47:221–32.CrossRefGoogle Scholar
  114. 114.
    Campbell AB, Pineda M, Harris JD, Flanigan DC. Return to sport after articular cartilage repair in athletes’ knees: a systematic review. Arthroscopy. 2016;32:651–68.PubMedCrossRefGoogle Scholar
  115. 115.
    Krych AJ, Pareek A, King AH, Johnson NR, Stuart MJ, Williams RJ. Return to sport after the surgical management of articular cartilage lesions in the knee: a meta-analysis. Knee Surg Sports Traumatol Arthrosc. 2016;25:3186–96.PubMedCrossRefGoogle Scholar

Copyright information

© ESSKA 2018

Authors and Affiliations

  • Renato Andrade
    • 1
    • 2
    • 3
  • Rogério Pereira
    • 1
    • 2
    • 3
    • 4
  • Ricardo Bastos
    • 1
    • 2
    • 5
  • Cátia Saavedra
    • 1
    • 2
  • Hélder Pereira
    • 2
    • 6
    • 7
    • 8
    • 9
  • Lior Laver
    • 10
    • 11
  • Philippe Landreau
    • 12
  • João Espregueira-Mendes
    • 1
    • 2
    • 6
    • 7
    • 13
    Email author
  1. 1.Clínica do Dragão, Espregueira-Mendes Sports Centre—FIFA Medical Centre of ExcellencePortoPortugal
  2. 2.Dom Henrique Research CentrePortoPortugal
  3. 3.Faculty of SportsUniversity of PortoPortoPortugal
  4. 4.Faculty of Health ScienceUniversity Fernando PessoaPortoPortugal
  5. 5.Universidade Federal Fluminense, NiteróiRio de JaneiroBrazil
  6. 6.3B’s Research Group–Biomaterials, Biodegradables and BiomimeticsHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of MinhoBarco, GuimarãesPortugal
  7. 7.ICVS/3B’s–PT Government Associate LaboratoryBraga/GuimarãesPortugal
  8. 8.Ripoll y De Prado Sports Clinic—FIFA Medical Centre of ExcellenceMurcia-MadridSpain
  9. 9.Orthopedic DepartmentCentro Hospitalar Póvoa de VarzimVila do CondePortugal
  10. 10.Department of Trauma and OrthopaedicsUniversity Hospitals Coventry and WarwickshireCoventryUK
  11. 11.Department of ArthroscopyRoyal Orthopaedic HospitalBirminghamUK
  12. 12.Department of SurgeryAspetar - Orthopaedic and Sports Medicine HospitalDohaQatar
  13. 13.Orthopaedics Department of Minho UniversityBragaPortugal

Personalised recommendations