Advertisement

E-Health

Potenziale der Digitalen Transformation in der Medizin
  • Horst Hahn
  • Andreas Schreiber

Zusammenfassung

Während in vielen Bereichen der Gesellschaft die Digitale Transformation in vollem Gange ist, sieht sich die Medizin noch vor immense Herausforderungen gestellt. Dabei sind die durch das Zusammenspiel moderner Biotechnologie und Informationstechnologie erreichbaren Potenziale immens. An vielen Stellen sind bereits Anzeichen der Transformation zu beobachten, die durch die Integration der bislang noch getrennten medizinischen Datenräume sowie durch den gezielten Einsatz neuartiger Technologien weiter beschleunigt wird. Wir beschreiben den heutigen Stand der integrierten Diagnostik sowie die Wirkmechanismen der entstehenden digitalen Medizin. Ein Fokus gilt dabei der seit wenigen Jahren stattfindenden Revolution der künstlichen Intelligenz. Gleichzeitig beobachten wir die Emanzipation der Patienten, die über soziale Netze, Internet-Suchmaschinen, Gesundheitsratgeber und Gesundheits-Apps mittlerweile Zugang zu einer enormen Bandbreite medizinischen Wissens haben. Vor diesem Hintergrund diskutieren wir den Wandel des Arzt-Patienten-Verhältnisses sowie der Rollenverteilung zwischen Arzt und Computer und der sich daraus ergebenden Geschäftsmodelle.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Quellen und Literatur

  1. [1]
    AHA – American Heart Association (2017) Alexa can tell you the steps for CPR, warning signs of heart attack and stroke. Blog. Zugriff im Juli 2017: http://news.heart.org/alexa-can-tell-you-the-steps-for-cpr-warning-signs-of-heart-attack-and-stroke/
  2. [2]
    Aerts HJ, Velazquez ER, Leijenaar RT et al (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:4006. doi: 10.1038/ncomms5006
  3. [3]
    ASCO (2017) Clinical Cancer Advances 2017, American Society of Clinical Oncology. Zugriff im Juli 2017: https://www.asco.org/research-progress/reports-studies/clinicalcancer-advances
  4. [4]
    CB Insights (2017) From Virtual Nurses To Drug Discovery: 106 Artificial Intelligence Startups In Healthcare. Zugriff im Juli 2017: https://www.cbinsights.com/blog/artificialintelligence-startups-healthcare/
  5. [5]
    CMS – Centers for Medicare and Medicaid Services (2017) NHE Fact Sheet. Zugriff im Juli 2017: https://www.cms.gov/research-statistics-data-and-systems/statistics-trendsand-reports/nationalhealthexpenddata/nhe-fact-sheet.html
  6. [6]
    Cooper DN, Ball EV, Stenson PD et al (2017) HGMD – The Human Gene Mutation Database at the Institute of Medical Genetics in Cardiff. Zugriff im Juli 2017: http://www.hgmd.cf.ac.uk/
  7. [7]
    Destatis – Statistisches Bundesamt (2017) Gesundheitsausgaben der Bundesrepublik Deutschland. Zugriff im Juli 2017: https://www.destatis.de/DE/ZahlenFakten/GesellschaftStaat/Gesundheit/Gesundheitsausgaben/Gesundheitsausgaben.html
  8. [8]
    Dusheck J (2016) Diagnose this – A health-care revolution in the making. Stanford Medicine Journal, Fall 2016. Zugriff im Juli 2017: https://stanmed.stanford.edu/2016fall/the-future-of-health-care-diagnostics.html
  9. [9]
    Esteva A, Kuprel B, Novoa RA et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639):115–118. doi: 10.1038/nature21056CrossRefGoogle Scholar
  10. [10]
    Ferrucci D, Levas A, Bagchi S et al (2013) Watson: Beyond Jeopardy! Artificial Intelligence 199:93–105. doi: 10.1016/j.artint.2012.06.009CrossRefGoogle Scholar
  11. [11]
    Harz M (2017) Cancer, Computers, and Complexity: Decision Making for the Patient. European Review 25(1):96–106. doi: 10.1017/S106279871600048XCrossRefGoogle Scholar
  12. [12]
    Herper M (2017) MD Anderson Benches IBM Watson In Setback For Artificial Intelligence In Medicine. Forbes. Zugriff im Juli 2017: https://www.forbes.com/sites/matthewherper/2017/02/19/md-anderson-benches-ibm-watson-in-setback-for-artificial-intelligence-in-medicine
  13. [13]
    Knight W (2017) The Dark Secret at the Heart of AI. MIT Technology Review. Zugriff im Juli 2017: https://www.technologyreview.com/s/604087/the-dark-secret-at-theheart-of-ai/
  14. [14]
    Lambin P, Rios-Velazquez E, Leijenaar R et al (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 48(4):441–6. doi: 10.1016/j.ejca.2011.11.036CrossRefGoogle Scholar
  15. [15]
    Mariotto AB, Yabroff KR, Shao Y et al (2011) Projections of the cost of cancer care in the United States: 2010-2020. J Natl Cancer Inst 103(2):117–28. doi: 10.1093/jnci/djq495CrossRefGoogle Scholar
  16. [16]
    NIH – National Institutes of Health (2011) Cancer costs projected to reach at least $158 billion in 2020. News Releases. Zugriff im Juli 2017: https://www.nih.gov/news-events/news-releases/cancer-costs-projected-reach-least-158-billion-2020
  17. [17]
    Ryan KJ (2016) Who’s Smartest: Alexa, Siri, and or Google Now? Inc. Zugriff im Juli 2017: https://www.inc.com/kevin-j-ryan/internet-trends-7-most-accurate-word-recognition-platforms.html
  18. [18]
    Sahiner B, Chan HP, Petrick N et al (1996) Classification of mass and normal breast tissue: a convolution neural network classifier with spatial domain and texture images. IEEE Trans Med Imaging 15(5):598–610. doi: 10.1109/42.538937CrossRefGoogle Scholar
  19. [19]
    Schmutzler R, Huster S, Wasem J, Dabrock P (2015) Risikoprädiktion: Vom Umgang mit dem Krankheitsrisiko. Dtsch Arztebl 112(20): A-910–3Google Scholar
  20. [20]
    Silver D, Huang A, Maddison CJ et al (2016) Mastering the game of Go with deep neural networks and tree search. Nature 529:484–489. doi: 10.1038/nature16961CrossRefGoogle Scholar
  21. [21]
    Spear BB, Heath-Chiozzi M, Huff J (2001) Clinical application of pharmacogenetics. Trends Mol Med 7(5):201–4. doi: 10.1016/S1471-4914(01)01986-4CrossRefGoogle Scholar
  22. [22]
    Stenson et al. (2017) The Human Gene Mutation Database: towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and nextgeneration sequencing studies. Hum Genet 136:665-677. doi:  10.1007/s00439-017-1779-6CrossRefGoogle Scholar
  23. [23]
    Tecco H (2017) 2016 Year End Funding Report: A reality check for digital health. Rock Health Funding Database. Zugriff im Juli 2017: https://rockhealth.com/reports/2016-year-end-funding-report-a-reality-check-for-digital-health/
  24. [24]
    The Economist (2017) A digital revolution in healthcare is speeding up. Zugriff im Juli 2017: https://www.economist.com/news/business/21717990-telemedicine-predictive-diagnostics-wearable-sensors-and-host-new-apps-will-transform-how
  25. [25]
    TheStreet (2013) What Information Are We Willing To Share To Improve Healthcare? Intel Healthcare Innovation Barometer. Zugriff im Juli 2017: https://www.thestreet.com/story/12143671/3/what-information-are-we-willing-to-share-to-improve-healthcare-graphic-business-wire.html
  26. [26]
    Topol E (2012) The Creative Destruction of Medicine: How the Digital Revolution will Create Better Health Care. Basic Books, New York. ISBN:978-0465061839Google Scholar
  27. [27]
    Trotter F, Uhlman D (2011) Hacking Healthcare – A Guide to Standards, Workflows, and Meaningful Use. O’Reilly Media, Sebastopol. ISBN:978-1449305024Google Scholar
  28. [28]
    Zhang W, Hasegawa A, Itoh K, Ichioka Y (1991) Image processing of human corneal endothelium based on a learning network. Appl Opt. 30(29):4211–7. doi: 10.1364/AO.30.004211CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland 2018

Authors and Affiliations

  • Horst Hahn
    • 1
  • Andreas Schreiber
    • 1
  1. 1.Fraunhofer-Institut für Bildgestützte Medizin MEVISBremenDeutschland

Personalised recommendations