Transition Systems Reduction: Balancing Between Precision and Simplicity

  • Sergey A. ShershakovEmail author
  • Anna A. Kalenkova
  • Irina A. Lomazova
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10470)


Transition systems are a powerful formalism, which is widely used for process model representation. A number of approaches were proposed in the process mining field to tackle the problem of constructing transition systems from event logs. Existing approaches discover transition systems that are either too large or too small. In this paper we propose an original approach to discover transition systems that perfectly fit event logs and whose size is adjustable depending on the user’s need. The proposed approach allows the ability to achieve a required balance between simple and precise models.


Transition systems Process mining Model reduction Process model quality 


  1. 1.
  2. 2.
  3. 3.
    van der Aalst, W.M.P., Rubin, V., Verbeek, H.M.W., Dongen, B.F., Kindler, E., Günther, C.W.: Process mining: a two-step approach to balance between underfitting and overfitting. Software Syst. Model. 9(1), 87–111 (2008). CrossRefGoogle Scholar
  4. 4.
    van der Aalst, W.M.P.: Process Mining - Discovery, Conformance and Enhancement of Business Processes. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-19345-3 zbMATHGoogle Scholar
  5. 5.
    Angluin, D.: Inference of reversible languages. J. ACM 29(3), 741–765 (1982). MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Badouel, E., Bernardinello, L., Darondeau, P.: Polynomial algorithms for the synthesis of bounded nets. In: Mosses, P.D., Nielsen, M., Schwartzbach, M.I. (eds.) CAAP 1995. LNCS, vol. 915, pp. 364–378. Springer, Heidelberg (1995). doi: 10.1007/3-540-59293-8_207 Google Scholar
  7. 7.
    Badouel, E., Bernardinello, L., Darondeau, P.: The synthesis problem for elementary net systems is NP-complete. Theoret. Comput. Sci. 186, 107–134 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Badouel, E., Darondeau, P.: Theory of regions. In: Reisig, W., Rozenberg, G. (eds.) ACPN 1996. LNCS, vol. 1491, pp. 529–586. Springer, Heidelberg (1998). doi: 10.1007/3-540-65306-6_22 CrossRefGoogle Scholar
  9. 9.
    Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Process mining based on regions of languages. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 375–383. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-75183-0_27 CrossRefGoogle Scholar
  10. 10.
    Biermann, A.W., Feldman, J.A.: On the synthesis of finite-state machines from samples of their behavior. IEEE Trans. Comput. 21(6), 592–597 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Buijs, J.C.A.M., Dongen, B.F., van der Aalst, W.M.P.: On the role of fitness, precision, generalization and simplicity in process discovery. In: Meersman, R., Panetto, H., Dillon, T., Rinderle-Ma, S., Dadam, P., Zhou, X., Pearson, S., Ferscha, A., Bergamaschi, S., Cruz, I.F. (eds.) OTM 2012. LNCS, vol. 7565, pp. 305–322. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-33606-5_19 CrossRefGoogle Scholar
  12. 12.
    Carmona, J., Cortadella, J., Kishinevsky, M.: A region-based algorithm for discovering petri nets from event logs. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 358–373. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-85758-7_26 CrossRefGoogle Scholar
  13. 13.
    Cook, J.E., Wolf, A.L.: Discovering models of software processes from event-based data. ACM Trans. Softw. Eng. Methodol. 7(3), 215–249 (1998). CrossRefGoogle Scholar
  14. 14.
    Cortadella, J., Kishinevsky, M., Lavagno, L., Yakovlev, A.: Deriving petri nets from finite transition systems. IEEE Trans. Comput. 47(8), 859–882 (1998). MathSciNetCrossRefGoogle Scholar
  15. 15.
    Lorenzoli, D., Mariani, L., Pezzè, M.: Inferring state-based behavior models. In: 4th International Workshop on Dynamic Analysis (WODA 2006) co-located with the 28th International Conference on Software Engineering (ICSE 2006), pp. 25–32. ACM Press (2006)Google Scholar
  16. 16.
    Park, D.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.) GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981). doi: 10.1007/BFb0017309 CrossRefGoogle Scholar
  17. 17.
    Solé, M., Carmona, J.: Process mining from a basis of state regions. In: Lilius, J., Penczek, W. (eds.) PETRI NETS 2010. LNCS, vol. 6128, pp. 226–245. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-13675-7_14 CrossRefGoogle Scholar
  18. 18.
    Sole, M., Carmona, J.: Region-based foldings in process discovery. IEEE Trans. Knowl. Data Eng. 25(1), 192–205 (2013)CrossRefGoogle Scholar
  19. 19.
    Verbeek, H., Buijs, J., Dongen, B., Aalst, W.: ProM 6: the process mining toolkit. In: Rosa, M.L. (ed.) Proceeding of BPM Demonstration Track 2010, CEUR Workshop Proceedings, vol. 615, pp. 34–39 (2010)Google Scholar
  20. 20.
    van der Werf, J.M.E.M., van Dongen, B.F., Hurkens, C.A.J., Serebrenik, A.: Process discovery using integer linear programming. In: van Hee, K.M., Valk, R. (eds.) PETRI NETS 2008. LNCS, vol. 5062, pp. 368–387. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-68746-7_24 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Sergey A. Shershakov
    • 1
    Email author
  • Anna A. Kalenkova
    • 1
  • Irina A. Lomazova
    • 1
  1. 1.National Research University Higher School of EconomicsMoscowRussia

Personalised recommendations