Advertisement

Determinism and Computational Power of Real Measurement-Based Quantum Computation

  • Simon Perdrix
  • Luc Sanselme
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10472)

Abstract

Measurement-based quantum computing (MBQC) is a universal model for quantum computation. The combinatorial characterisation of determinism in this model, powered by measurements, and hence, fundamentally probabilistic, is the cornerstone of most of the breakthrough results in this field. The most general known sufficient condition for a deterministic MBQC to be driven is that the underlying graph of the computation has a particular kind of flow called Pauli flow. The necessity of the Pauli flow was an open question. We show that Pauli flow is not necessary, providing several counter examples. We prove however that Pauli flow is necessary for determinism in the real MBQC model, an interesting and useful fragment of MBQC.

We explore the consequences of this result for real MBQC and its applications. Real MBQC and more generally real quantum computing is known to be universal for quantum computing. Real MBQC has been used for interactive proofs by McKague. The two-prover case corresponds to real-MBQC on bipartite graphs. While (complex) MBQC on bipartite graphs are universal, the universality of real MBQC on bipartite graphs was an open question. We show that real bipartite MBQC is not universal proving that all measurements of real bipartite MBQC can be parallelised leading to constant depth computations. As a consequence, McKague’s techniques cannot lead to two-prover interactive proofs.

References

  1. 1.
    Bernstein, E., Vazirani, U.: Quantum complexity theory. SIAM J. Comput. 26, 1411–1478 (1997)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Broadbent, A., Fitzsimons, J., Kashefi, E.: Universal blind quantum computation. In: 50th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2009 (2009). http://www.citebase.org/abstract?id=oai:arXiv.org:0807.4154
  3. 3.
    Broadbent, A., Kashefi, E.: Parallelizing quantum circuits. Theor. Comput. Sci. 410(26), 2489–2510 (2009)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Browne, D.E., Kashefi, E., Mhalla, M., Perdrix, S.: Generalized flow and determinism in measurement-based quantum computation. New J. Phys. (NJP) 9(8) (2007). http://iopscience.iop.org/1367-2630/9/8/250/fulltext/
  5. 5.
    Browne, D., Kashefi, E., Perdrix, S.: Computational depth complexity of measurement-based quantum computation. In: van Dam, W., Kendon, V.M., Severini, S. (eds.) TQC 2010. LNCS, vol. 6519, pp. 35–46. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-18073-6_4 CrossRefGoogle Scholar
  6. 6.
    Danos, V., Kashefi, E.: Determinism in the one-way model. Phys. Rev. A 74(052310) (2006)Google Scholar
  7. 7.
    Danos, V., Kashefi, E., Panangaden, P.: The measurement calculus. J. ACM 54(2) (2007)Google Scholar
  8. 8.
    Danos, V., Kashefi, E., Panangaden, P., Perdrix, S.: Extended Measurement Calculus. Cambridge University Press, Cambridge (2010)MATHGoogle Scholar
  9. 9.
    Delfosse, N., Guerin, P.A., Bian, J., Raussendorf, R.: Wigner function negativity and contextuality in quantum computation on rebits. Phys. Rev. X 5(2), 021003 (2015)Google Scholar
  10. 10.
    Hamrit, N., Perdrix, S.: Reversibility in extended measurement-based quantum computation. In: Krivine, J., Stefani, J.-B. (eds.) RC 2015. LNCS, vol. 9138, pp. 129–138. Springer, Cham (2015). doi: 10.1007/978-3-319-20860-2_8 CrossRefGoogle Scholar
  11. 11.
    Hein, M., Eisert, J., Briegel, H.J.: Multi-party entanglement in graph states. Phys. Rev. A 69, 062311 (2004). doi: 10.1103/PhysRevA.69.062311 MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    McKague, M.: Interactive proofs for BQP via self-tested graph states. Theory Comput. 12(3), 1–42 (2016)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Mhalla, M., Perdrix, S.: Finding optimal flows efficiently. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5125, pp. 857–868. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-70575-8_70 CrossRefGoogle Scholar
  14. 14.
    Mhalla, M., Perdrix, S.: Graph states, pivot minor, and universality of (X, Z)-measurements. Int. J. Unconv. Comput. 9(1–2), 153–171 (2013)Google Scholar
  15. 15.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, New York (2000)MATHGoogle Scholar
  16. 16.
    Perdrix, S., Sanselme, L.: Determinism and computational power of real measurement-based quantum computation (2016). arXiv preprint arXiv:1610.02824
  17. 17.
    Prevedel, R., Walther, P., Tiefenbacher, F., Bohi, P., Kaltenbaek, R., Jennewein, T., Zeilinger, A.: High-speed linear optics quantum computing using active feed-forward. Nature 445(7123), 65–69 (2007). doi: 10.1038/nature05346 CrossRefGoogle Scholar
  18. 18.
    Raussendorf, R.: Contextuality in measurement-based quantum computation. Phys. Rev. A 88(2), 022322 (2013)CrossRefGoogle Scholar
  19. 19.
    Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001)CrossRefGoogle Scholar
  20. 20.
    Raussendorf, R., Browne, D.E., Briegel, H.J.: Measurement-based quantum computation with cluster states. Phys. Rev. A 68, 022312 (2003). http://arxiv.org/abs/quant-ph/0301052
  21. 21.
    Raussendorf, R., Harrington, J., Goyal, K.: A fault-tolerant one-way quantum computer. Ann. Phys. 321(9), 2242–2270 (2006)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Walther, P., Resch, K.J., Rudolph, T., Schenck, E., Weinfurter, H., Vedral, V., Aspelmeyer, M., Zeilinger, A.: Experimental one-way quantum computing. Nature 434(7030), 169–176 (2005). doi: 10.1038/nature03347 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.CNRS, LORIAUniversité de Lorraine, Inria-CarteNancyFrance
  2. 2.LORIA, CNRSUniversité de Lorraine, Inria-Caramba, Lycée PoincaréNancyFrance

Personalised recommendations