Advertisement

Decision Problems for Subclasses of Rational Relations over Finite and Infinite Words

  • Christof Löding
  • Christopher Spinrath
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10472)

Abstract

We consider decision problems for relations over finite and infinite words defined by finite automata. We prove that the equivalence problem for binary deterministic rational relations over infinite words is undecidable in contrast to the case of finite words, where the problem is decidable. Furthermore, we show that it is decidable in doubly exponential time for an automatic relation over infinite words whether it is a recognizable relation. We also revisit this problem in the context of finite words and improve the complexity of the decision procedure to single exponential time. The procedure is based on a polynomial time regularity test for deterministic visibly pushdown automata, which is a result of independent interest.

Keywords

Rational relations Automatic relations \(\omega \)-automata Finite transducers Visibly pushdown automata 

References

  1. 1.
    Abdulla, P.A.: Regular model checking. STTT 14(2), 109–118 (2012). doi: 10.1007/s10009-011-0216-8 CrossRefGoogle Scholar
  2. 2.
    Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Proceedings of the Thirty-sixth Annual ACM Symposium on Theory of Computing, pp. 202–211. ACM (2004)Google Scholar
  3. 3.
    Bárány, V., Löding, C., Serre, O.: Regularity problems for visibly pushdown languages. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 420–431. Springer, Heidelberg (2006). doi: 10.1007/11672142_34 CrossRefGoogle Scholar
  4. 4.
    Berstel, J.: Transductions and Context-Free Languages. Springer, Stuttgart (1979)CrossRefMATHGoogle Scholar
  5. 5.
    Bird, M.: The equivalence problem for deterministic two-tape automata. J. Comput. Syst. Sci. 7(2), 218–236 (1973)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Blumensath, A., Grädel, E.: Automatic structures. In: Proceedings of the 15th IEEE Symposium on Logic in Computer Science, LICS 2000, pp. 51–62. IEEE Computer Society Press (2000)Google Scholar
  7. 7.
    Böhm, S., Göller, S., Halfon, S., Hofman, P.: On Büchi one-counter automata. In: Vollmer, H., Vallée, B. (eds.) 34th Symposium on Theoretical Aspects of Computer Science (STACS 2017). Leibniz International Proceedings in Informatics (LIPIcs), vol. 66, pp. 14:1–14:13 (2017). doi: 10.4230/LIPIcs.STACS.2017.14. ISBN 978-3-95977-028-6
  8. 8.
    Boigelot, B., Jodogne, S., Wolper, P.: An effective decision procedure for linear arithmetic over the integers and reals. ACM Trans. Comput. Log. 6(3), 614–633 (2005). doi: 10.1145/1071596.1071601 MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Boigelot, B., Legay, A., Wolper, P.: Omega-regular model checking. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 561–575. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-24730-2_41 CrossRefGoogle Scholar
  10. 10.
    Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata: application to model-checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997). doi: 10.1007/3-540-63141-0_10 CrossRefGoogle Scholar
  11. 11.
    Bozzelli, L., Maubert, B., Pinchinat, S.: Uniform strategies, rational relations and jumping automata. Inf. Comput. 242, 80–107 (2015). doi: 10.1016/j.ic.2015.03.012 MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Nagel, E. (ed.) Logic, Methodology, and Philosophy of Science: Proceedings of the 1960 International Congress, pp. 1–11. Stanford University Press, Palo Alto (1962)Google Scholar
  13. 13.
    Calbrix, H., Nivat, M., Podelski, A.: Ultimately periodic words of rational \(\omega \)-languages. In: Brookes, S., Main, M., Melton, A., Mislove, M., Schmidt, D. (eds.) MFPS 1993. LNCS, vol. 802, pp. 554–566. Springer, Heidelberg (1994). doi: 10.1007/3-540-58027-1_27 CrossRefGoogle Scholar
  14. 14.
    Carton, O., Choffrut, C., Grigorieff, S.: Decision problems among the main subfamilies of rational relations. RAIRO-Theor. Inform. Appl. 40(02), 255–275 (2006)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Caucal, D.: Synchronization of pushdown automata. In: Ibarra, O.H., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 120–132. Springer, Heidelberg (2006). doi: 10.1007/11779148_12 CrossRefGoogle Scholar
  16. 16.
    Filiot, E., Jecker, I., Löding, C., Winter, S.: On equivalence and uniformisation problems for finite transducers. In: 43rd International Colloquium on Automata, Languages, and Programming, ICALP 2016. LIPIcs, vol. 55, p. 125:1–125:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016). doi: 10.4230/LIPIcs.ICALP.2016.125
  17. 17.
    Frougny, C., Sakarovitch, J.: Synchronized rational relations of finite and infinite words. Theor. Comput. Sci. 108(1), 45–82 (1993)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Harju, T., Karhumäki, J.: The equivalence problem of multitape finite automata. Theor. Comput. Sci. 78(2), 347–355 (1991). doi: 10.1016/0304-3975(91)90356-7 MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Khoussainov, B., Nerode, A.: Automatic presentations of structures. In: Leivant, D. (ed.) LCC 1994. LNCS, vol. 960, pp. 367–392. Springer, Heidelberg (1995). doi: 10.1007/3-540-60178-3_93 CrossRefGoogle Scholar
  20. 20.
    Kuske, D., Lohrey, M.: First-order and counting theories of \(\omega \)-automatic structures. In: Aceto, L., Ingólfsdóttir, A. (eds.) FoSSaCS 2006. LNCS, vol. 3921, pp. 322–336. Springer, Heidelberg (2006). doi: 10.1007/11690634_22 CrossRefGoogle Scholar
  21. 21.
    Löding, C., Repke, S.: Regularity problems for weak pushdown \(\omega \)-automata and games. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 764–776. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-32589-2_66 CrossRefGoogle Scholar
  22. 22.
    Pǎun, G., Salomaa, A.: Thin and slender languages. Discret. Appl. Math. 61(3), 257–270 (1995)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic parity automata. In: 21st Annual IEEE Symposium on Logic in Computer Science (LICS 2006), pp. 255–264. IEEE (2006)Google Scholar
  24. 24.
    Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res. Dev. 3(2), 114–125 (1959)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press, New York (2009)CrossRefMATHGoogle Scholar
  26. 26.
    Srba, J.: Visibly pushdown automata: from language equivalence to simulation and bisimulation. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 89–103. Springer, Heidelberg (2006). doi: 10.1007/11874683_6 CrossRefGoogle Scholar
  27. 27.
    Stearns, R.E.: A regularity test for pushdown machines. Inf. Control 11(3), 323–340 (1967)CrossRefMATHGoogle Scholar
  28. 28.
    Tao, Y.: Infinity problems and countability problems for \(\omega \)-automata. Inf. Process. Lett. 100(4), 151–153 (2006)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Thomas, W.: Automata on infinite objects. In: Handbook of Theoretical Computer Science, vol. B, pp. 133–191 (1990)Google Scholar
  30. 30.
    Thomas, W.: Infinite trees and automation-definable relations over \(\omega \)-words. Theor. Comput. Sci. 103(1), 143–159 (1992). doi: 10.1016/0304-3975(92)90090-3 CrossRefMATHGoogle Scholar
  31. 31.
    Thomas, W.: Facets of synthesis: revisiting Church’s problem. In: Alfaro, L. (ed.) FoSSaCS 2009. LNCS, vol. 5504, pp. 1–14. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-00596-1_1 CrossRefGoogle Scholar
  32. 32.
    Valiant, L.G.: Regularity and related problems for deterministic pushdown automata. J. ACM (JACM) 22(1), 1–10 (1975)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.RWTH Aachen UniversityAachenGermany
  2. 2.TU Dortmund UniversityDortmundGermany

Personalised recommendations