Deterministic Oblivious Local Broadcast in the SINR Model

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10472)

Abstract

Local Broadcast is one of the most fundamental communication problems in wireless networks. The task is to allow each node to deliver a message to all its neighbors. In this paper we consider an oblivious and semi-oblivious variants of the problem. The oblivious algorithm is a fixed deterministic schedule of transmissions that tells each station in which rounds it has to transmit. In semi-oblivious variant of the problem we allow a station to quit the execution of the schedule at some point. We present algorithms with complexity of \(O(\varDelta ^{2+2/(\alpha -2)}\log N)\) for the oblivious variant and \(O(\varDelta \log N)\) for the semi-oblivious case, where \(\alpha >2\) is a path loss parameter, [1, N] is the range of IDs of stations and \(\varDelta \) is the maximal degree in a network. In the latter case we make use of the acknowledgements, which inform a station, after it sent a message, if all its neighbors had received it.

Notes

Acknowledgments

The authors would like to thank Darek Kowalski for his comments to the paper.

References

  1. 1.
    Anta, A.F., Mosteiro, M.A., Munoz, J.R.: Unbounded contention resolution in multiple-access channels. Algorithmica 67, 295–314 (2013)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Aronov, B., Katz, M.J.: Batched point location in SINR diagrams via algebraic tools. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9134, pp. 65–77. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-47672-7_6 CrossRefGoogle Scholar
  3. 3.
    Barenboim, L., Peleg, D.: Nearly optimal local broadcasting in the SINR model with feedback. In: Scheideler, C. (ed.) Structural Information and Communication Complexity. LNCS, vol. 9439, pp. 164–178. Springer, Cham (2015). doi: 10.1007/978-3-319-25258-2_12 CrossRefGoogle Scholar
  4. 4.
    Daum, S., Gilbert, S., Kuhn, F., Newport, C.: Broadcast in the ad hoc SINR model. In: Afek, Y. (ed.) DISC 2013. LNCS, vol. 8205, pp. 358–372. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-41527-2_25 CrossRefGoogle Scholar
  5. 5.
    De Marco, G., Kowalski, D.: Fast nonadaptive deterministic algorithm for conflict resolution in a dynamic multiple-access channel. SIAM J. Comput. 44(3), 868–888 (2015)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    De Marco, G., Kowalski, D.: Contention resolution in a non-synchronized multiple access channel. In: 27th Annual IEEE International Symposium on Parallel and Distributed Processing (IPDPS 2013), Cambridge, MA, USA (2013)Google Scholar
  7. 7.
    De Marco, G., Kowalski, D.R.: Towards power-sensitive communication on a multiple-access channel. In: 30th International Conference on Distributed Computing Systems (ICDCS 2010), Genoa, Italy, May 2010Google Scholar
  8. 8.
    De Marco, G., Pellegrini, M., Sburlati, G.: Faster deterministic wakeup in multiple access channels. Discrete Appl. Math. 155(8), 898–903 (2007)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    De Marco, G., Stachowiak, G.: Asynchronous Shared Channel, PODC 2017. AcceptedGoogle Scholar
  10. 10.
    Goussevskaia, O., Moscibroda, T., Wattenhofer, R.: Local broadcasting in the physical interference model. In: Segal, M., Kesselman, A. (eds.) DIALM-POMC, pp. 35–44. ACM (2008)Google Scholar
  11. 11.
    Halldórsson, M.M., Holzer, S., Lynch, N.A.: A local broadcast layer for the SINR network model. In: Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing, PODC 2015, Donostia-San Sebastián, 21–23 July 2015, Spain, pp. 129–138 (2015)Google Scholar
  12. 12.
    Halldórsson, M.M., Mitra, P.: Nearly optimal bounds for distributed wireless scheduling in the SINR model. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6756, pp. 625–636. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-22012-8_50 CrossRefGoogle Scholar
  13. 13.
    Halldórsson, M.M., Mitra, P.: Towards tight bounds for local broadcasting. In: Kuhn, F., Newport, C.C. (eds.) FOMC, p. 2. ACM (2012)Google Scholar
  14. 14.
    Halldórsson, M.M., Tonoyan, T.: How well can graphs represent wireless interference? In: Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, 14–17 June 2015, Portland, OR, USA, pp. 635–644 (2015)Google Scholar
  15. 15.
    Hobbs, N., Wang, Y., Hua, Q.-S., Yu, D., Lau, F.C.M.: Deterministic distributed data aggregation under the SINR model. In: Agrawal, M., Cooper, S.B., Li, A. (eds.) TAMC 2012. LNCS, vol. 7287, pp. 385–399. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-29952-0_38 CrossRefGoogle Scholar
  16. 16.
    Jurdzinski, T., Kowalski, D.R.: Distributed backbone structure for algorithms in the SINR model of wireless networks. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol. 7611, pp. 106–120. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-33651-5_8 CrossRefGoogle Scholar
  17. 17.
    Jurdzinski, T., Kowalski, D.R., Rozanski, M., Stachowiak, G.: Distributed randomized broadcasting in wireless networks under the SINR model. In: Afek, Y. (ed.) DISC 2013. LNCS, vol. 8205, pp. 373–387. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-41527-2_26 CrossRefGoogle Scholar
  18. 18.
    Jurdzinski, T., Kowalski, D.R., Rozanski, M., Stachowiak, G.: On the impact of geometry on ad hoc communication in wireless networks. In: Halldórsson, M.M., Dolev, S. (eds.) ACM Symposium on Principles of Distributed Computing, PODC 2014, 15–18 July 2014, Paris, France, pp. 357–366. ACM (2014)Google Scholar
  19. 19.
    Jurdzinski, T., Kowalski, D.R., Stachowiak, G.: Distributed deterministic broadcasting in wireless networks of weak devices. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013. LNCS, vol. 7966, pp. 632–644. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-39212-2_55 CrossRefGoogle Scholar
  20. 20.
    Kantor, E., Lotker, Z., Parter, M., Peleg, D.: The minimum principle of SINR: a useful discretization tool for wireless communication. In: IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS 2015, 17–20 October 2015, Berkeley, CA, USA, pp. 330–349 (2015)Google Scholar
  21. 21.
    Kantor, E., Lotker, Z., Parter, M., Peleg, D.: The topology of wireless communication. J. ACM 62(5), 37:1–37:32 (2015)Google Scholar
  22. 22.
    Kesselheim, T.: A constant-factor approximation for wireless capacity maximization with power control in the SINR model. In: Randall, D. (ed.) SODA, pp. 1549–1559. SIAM (2011)Google Scholar
  23. 23.
    Komlos, J., Greenberg, A.G.: An asymptotically fast nonadaptive algorithm for conflict resolution in multiple-access channels. IEEE Trans. Inf. Theory 31(2), 302–306 (1985)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Moscibroda, T., Wattenhofer, R.: The complexity of connectivity in wireless networks. In: INFOCOM 2006 25th IEEE International Conference on Computer Communications, Joint Conference of the IEEE Computer and Communications Societies, 23–29 April 2006, Barcelona, Catalunya, Spain (2006)Google Scholar
  25. 25.
    Porat, E., Rothschild, A.: Explicit nonadaptive combinatorial group testing schemes. IEEE Trans. Inf. Theory 57(12), 7982–7989 (2011)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Yu, D., Hua, Q., Wang, Y., Lau, F.C.M.: An o(log n) distributed approximation algorithm for local broadcasting in unstructured wireless networks. In: IEEE 8th International Conference on Distributed Computing in Sensor Systems, DCOSS 2012, 16–18 May 2012, Hangzhou, China, pp. 132–139 (2012)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Institute of Computer ScienceUniversity of WrocławWrocławPoland

Personalised recommendations