Tropical Combinatorial Nullstellensatz and Fewnomials Testing

  • Dima Grigoriev
  • Vladimir V. Podolskii
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10472)


Tropical algebra emerges in many fields of mathematics such as algebraic geometry, mathematical physics and combinatorial optimization. In part, its importance is related to the fact that it makes various parameters of mathematical objects computationally accessible. Tropical polynomials play an important role in this, especially for the case of algebraic geometry. On the other hand, many algebraic questions behind tropical polynomials remain open. In this paper we address three basic questions on tropical polynomials closely related to their computational properties:
  1. 1.

    Given a polynomial with a certain support (set of monomials) and a (finite) set of inputs, when is it possible for the polynomial to vanish on all these inputs?

  2. 2.

    A more precise question, given a polynomial with a certain support and a (finite) set of inputs, how many roots can polynomial have on this set of inputs?

  3. 3.

    Given an integer k, for which s there is a set of s inputs such that any non-zero polynomial with at most k monomials has a non-root among these inputs?


In the classical algebra well-known results in the direction of these questions are Combinatorial Nullstellensatz, Schwartz-Zippel Lemma and Universal Testing Set for sparse polynomials respectively. In this paper we extensively study these three questions for tropical polynomials and provide results analogous to the classical results mentioned above.


  1. 1.
    Akian, M., Gaubert, S., Guterman, A.: Linear independence over tropical semirings and beyond. Contemp. Math. 495, 1–33 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Akian, M., Gaubert, S., Guterman, A.: Tropical polyhedra are equivalent to mean payoff games. Int. J. Algebra Comput. 22(1), 1250001 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Alon, N.: Combinatorial Nullstellensatz. Comb. Probab. Comput. 8(1–2), 7–29 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ben-Or, M., Tiwari, P.: A deterministic algorithm for sparse multivariate polynomial interpolation. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, STOC 1988, pp. 301–309. ACM, New York (1988)Google Scholar
  5. 5.
    Bihan, F.: Irrational mixed decomposition and sharp fewnomial bounds for tropical polynomial systems. Discrete Comput. Geom. 55(4), 907–933 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Brass, P., Moser, W.O.J., Pach, J.: Research Problems in Discrete Geometry. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  7. 7.
    Chari, S., Rohatgi, P., Srinivasan, A.: Randomness-optimal unique element isolation with applications to perfect matching and related problems. SIAM J. Comput. 24(5), 1036–1050 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Davydow, A., Grigoriev, D.: Bounds on the number of connected components for tropical prevarieties. Discrete Comput. Geom. 57(2), 470–493 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Develin, M., Santos, F., Sturmfels, B.: On the rank of a tropical matrix. Comb. Comput. Geom. 52, 213–242 (2005)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Grigoriev, D.: Complexity of solving tropical linear systems. Comput. Complex. 22(1), 71–88 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Grigoriev, D., Karpinski, M.: The matching problem for bipartite graphs with polynomially bounded permanents is in NC (extended abstract). In: 28th Annual Symposium on Foundations of Computer Science, Los Angeles, California, USA, 27–29, pp. 166–172, October 1987Google Scholar
  12. 12.
    Grigoriev, D., Podolskii, V.V.: Complexity of tropical and min-plus linear prevarieties. Comput. Complex. 24(1), 31–64 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Grigoriev, D., Podolskii, V.V.: Tropical effective primary and dual Nullstellensätze. In: 32nd International Symposium on Theoretical Aspects of Computer Science, STACS 4–7 2015, Garching, Germany, pp. 379–391, March 2015Google Scholar
  14. 14.
    Grigoriev, D.Y., Karpinski, M., Singer, M.F.: The interpolation problem for k-sparse sums of eigenfunctions of operators. Adv. Appl. Math. 12(1), 76–81 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Huber, B., Sturmfels, B.: A polyhedral method for solving sparse polynomial systems. Math. Comput. 64, 1541–1555 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Itenberg, I., Mikhalkin, G., Shustin, E.: Tropical Algebraic Geometry. Oberwolfach Seminars. Birkhäuser, Boston (2009)CrossRefzbMATHGoogle Scholar
  17. 17.
    Izhakian, Z., Rowen, L.: The tropical rank of a tropical matrix. Commun. Algebra 37(11), 3912–3927 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Kaltofen, E., Yagati, L.: Improved sparse multivariate polynomial interpolation algorithms. In: Gianni, P. (ed.) ISSAC 1988. LNCS, vol. 358, pp. 467–474. Springer, Heidelberg (1989). doi: 10.1007/3-540-51084-2_44 CrossRefGoogle Scholar
  19. 19.
    Klivans, A.R., Spielman, D.: Randomness efficient identity testing of multivariate polynomials. In: Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing, STOC 2001, pp. 216–223. ACM, New York (2001)Google Scholar
  20. 20.
    Maclagan, D., Sturmfels, B.: Introduction to Tropical Geometry: Graduate Studies in Mathematics. American Mathematical Society, Providence (2015)CrossRefzbMATHGoogle Scholar
  21. 21.
    Mikhalkin, G.: Amoebas of algebraic varieties and tropical geometry. In: Donaldson, S., Eliashberg, Y., Gromov, M. (eds.) Different Faces of Geometry. International Mathematical Series, vol. 3, pp. 257–300. Springer, US (2004)CrossRefGoogle Scholar
  22. 22.
    Mulmuley, K., Vazirani, U.V., Vazirani, V.V.: Matching is as easy as matrix inversion. Combinatorica 7(1), 105–113 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Richter-Gebert, J., Sturmfels, B., Theobald, T.: First steps in tropical geometry. Idempotent Math. Math. Phys. Contemp. Math. 377, 289–317 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Risler, J.-J., Ronga, F.: Testing polynomials. J. Symbolic Comput. 10(1), 1–5 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identities. J. ACM 27(4), 701–717 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Shustin, E., Izhakian, Z.: A tropical Nullstellensatz. Proc. Am. Math. Soc. 135(12), 3815–3821 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Steffens, R., Theobald, T.: Combinatorics and genus of tropical intersections and Ehrhart theory. SIAM J. Discrete Math. 24(1), 17–32 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Sturmfels, B.: Solving Systems of Polynomial Equations. CBMS Regional Conference in Math, vol. 97. American Mathematical Society, Providence (2002)zbMATHGoogle Scholar
  29. 29.
    Theobald, T.: On the frontiers of polynomial computations in tropical geometry. J. Symb. Comput. 41(12), 1360–1375 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Urabe, M.: On a partition into convex polygons. Discrete Appl. Math. 64(2), 179–191 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Urabe, M.: Partitioning point sets in space into disjoint convex polytopes. Comput. Geom. 13(3), 173–178 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Valtr, P.: Sets in \(\mathbb{R}^d\) with no large empty convex subsets. Discrete Math. 108(1), 115–124 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Vorobyev, N.: Extremal algebra of positive matrices. Elektron. Informationsverarbeitung und Kybernetik 3, 39–71 (1967)MathSciNetGoogle Scholar
  34. 34.
    Zippel, R.: Probabilistic algorithms for sparse polynomials. In: Ng, E.W. (ed.) Symbolic and Algebraic Computation. LNCS, vol. 72, pp. 216–226. Springer, Heidelberg (1979). doi: 10.1007/3-540-09519-5_73 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.CNRS, MathématiquesUniversité de LilleVilleneuve d’AscqFrance
  2. 2.Steklov Mathematical InstituteMoscowRussia
  3. 3.National Research University Higher School of EconomicsMoscowRussia

Personalised recommendations