Tropical Combinatorial Nullstellensatz and Fewnomials Testing

• Dima Grigoriev
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10472)

Abstract

Tropical algebra emerges in many fields of mathematics such as algebraic geometry, mathematical physics and combinatorial optimization. In part, its importance is related to the fact that it makes various parameters of mathematical objects computationally accessible. Tropical polynomials play an important role in this, especially for the case of algebraic geometry. On the other hand, many algebraic questions behind tropical polynomials remain open. In this paper we address three basic questions on tropical polynomials closely related to their computational properties:
1. 1.

Given a polynomial with a certain support (set of monomials) and a (finite) set of inputs, when is it possible for the polynomial to vanish on all these inputs?

2. 2.

A more precise question, given a polynomial with a certain support and a (finite) set of inputs, how many roots can polynomial have on this set of inputs?

3. 3.

Given an integer k, for which s there is a set of s inputs such that any non-zero polynomial with at most k monomials has a non-root among these inputs?

In the classical algebra well-known results in the direction of these questions are Combinatorial Nullstellensatz, Schwartz-Zippel Lemma and Universal Testing Set for sparse polynomials respectively. In this paper we extensively study these three questions for tropical polynomials and provide results analogous to the classical results mentioned above.

References

1. 1.
Akian, M., Gaubert, S., Guterman, A.: Linear independence over tropical semirings and beyond. Contemp. Math. 495, 1–33 (2009)
2. 2.
Akian, M., Gaubert, S., Guterman, A.: Tropical polyhedra are equivalent to mean payoff games. Int. J. Algebra Comput. 22(1), 1250001 (2012)
3. 3.
Alon, N.: Combinatorial Nullstellensatz. Comb. Probab. Comput. 8(1–2), 7–29 (1999)
4. 4.
Ben-Or, M., Tiwari, P.: A deterministic algorithm for sparse multivariate polynomial interpolation. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, STOC 1988, pp. 301–309. ACM, New York (1988)Google Scholar
5. 5.
Bihan, F.: Irrational mixed decomposition and sharp fewnomial bounds for tropical polynomial systems. Discrete Comput. Geom. 55(4), 907–933 (2016)
6. 6.
Brass, P., Moser, W.O.J., Pach, J.: Research Problems in Discrete Geometry. Springer, Heidelberg (2005)
7. 7.
Chari, S., Rohatgi, P., Srinivasan, A.: Randomness-optimal unique element isolation with applications to perfect matching and related problems. SIAM J. Comput. 24(5), 1036–1050 (1995)
8. 8.
Davydow, A., Grigoriev, D.: Bounds on the number of connected components for tropical prevarieties. Discrete Comput. Geom. 57(2), 470–493 (2017)
9. 9.
Develin, M., Santos, F., Sturmfels, B.: On the rank of a tropical matrix. Comb. Comput. Geom. 52, 213–242 (2005)
10. 10.
Grigoriev, D.: Complexity of solving tropical linear systems. Comput. Complex. 22(1), 71–88 (2013)
11. 11.
Grigoriev, D., Karpinski, M.: The matching problem for bipartite graphs with polynomially bounded permanents is in NC (extended abstract). In: 28th Annual Symposium on Foundations of Computer Science, Los Angeles, California, USA, 27–29, pp. 166–172, October 1987Google Scholar
12. 12.
Grigoriev, D., Podolskii, V.V.: Complexity of tropical and min-plus linear prevarieties. Comput. Complex. 24(1), 31–64 (2015)
13. 13.
Grigoriev, D., Podolskii, V.V.: Tropical effective primary and dual Nullstellensätze. In: 32nd International Symposium on Theoretical Aspects of Computer Science, STACS 4–7 2015, Garching, Germany, pp. 379–391, March 2015Google Scholar
14. 14.
Grigoriev, D.Y., Karpinski, M., Singer, M.F.: The interpolation problem for k-sparse sums of eigenfunctions of operators. Adv. Appl. Math. 12(1), 76–81 (1991)
15. 15.
Huber, B., Sturmfels, B.: A polyhedral method for solving sparse polynomial systems. Math. Comput. 64, 1541–1555 (1995)
16. 16.
Itenberg, I., Mikhalkin, G., Shustin, E.: Tropical Algebraic Geometry. Oberwolfach Seminars. Birkhäuser, Boston (2009)
17. 17.
Izhakian, Z., Rowen, L.: The tropical rank of a tropical matrix. Commun. Algebra 37(11), 3912–3927 (2009)
18. 18.
Kaltofen, E., Yagati, L.: Improved sparse multivariate polynomial interpolation algorithms. In: Gianni, P. (ed.) ISSAC 1988. LNCS, vol. 358, pp. 467–474. Springer, Heidelberg (1989). doi:
19. 19.
Klivans, A.R., Spielman, D.: Randomness efficient identity testing of multivariate polynomials. In: Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing, STOC 2001, pp. 216–223. ACM, New York (2001)Google Scholar
20. 20.
Maclagan, D., Sturmfels, B.: Introduction to Tropical Geometry: Graduate Studies in Mathematics. American Mathematical Society, Providence (2015)
21. 21.
Mikhalkin, G.: Amoebas of algebraic varieties and tropical geometry. In: Donaldson, S., Eliashberg, Y., Gromov, M. (eds.) Different Faces of Geometry. International Mathematical Series, vol. 3, pp. 257–300. Springer, US (2004)
22. 22.
Mulmuley, K., Vazirani, U.V., Vazirani, V.V.: Matching is as easy as matrix inversion. Combinatorica 7(1), 105–113 (1987)
23. 23.
Richter-Gebert, J., Sturmfels, B., Theobald, T.: First steps in tropical geometry. Idempotent Math. Math. Phys. Contemp. Math. 377, 289–317 (2003)
24. 24.
Risler, J.-J., Ronga, F.: Testing polynomials. J. Symbolic Comput. 10(1), 1–5 (1990)
25. 25.
Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identities. J. ACM 27(4), 701–717 (1980)
26. 26.
Shustin, E., Izhakian, Z.: A tropical Nullstellensatz. Proc. Am. Math. Soc. 135(12), 3815–3821 (2007)
27. 27.
Steffens, R., Theobald, T.: Combinatorics and genus of tropical intersections and Ehrhart theory. SIAM J. Discrete Math. 24(1), 17–32 (2010)
28. 28.
Sturmfels, B.: Solving Systems of Polynomial Equations. CBMS Regional Conference in Math, vol. 97. American Mathematical Society, Providence (2002)
29. 29.
Theobald, T.: On the frontiers of polynomial computations in tropical geometry. J. Symb. Comput. 41(12), 1360–1375 (2006)
30. 30.
Urabe, M.: On a partition into convex polygons. Discrete Appl. Math. 64(2), 179–191 (1996)
31. 31.
Urabe, M.: Partitioning point sets in space into disjoint convex polytopes. Comput. Geom. 13(3), 173–178 (1999)
32. 32.
Valtr, P.: Sets in $$\mathbb{R}^d$$ with no large empty convex subsets. Discrete Math. 108(1), 115–124 (1992)
33. 33.
Vorobyev, N.: Extremal algebra of positive matrices. Elektron. Informationsverarbeitung und Kybernetik 3, 39–71 (1967)
34. 34.
Zippel, R.: Probabilistic algorithms for sparse polynomials. In: Ng, E.W. (ed.) Symbolic and Algebraic Computation. LNCS, vol. 72, pp. 216–226. Springer, Heidelberg (1979). doi: